P1056 组合数的和

转跳点:

1056 组合数的和 (15分)

给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字。要求所有可能组合出来的 2 位数字的和。例如给定 2、5、8,则可以组合出:25、28、52、58、82、85,它们的和为330。

输入格式:

输入在一行中先给出 N(1 < N < 10),随后给出 N 个不同的非 0 个位数字。数字间以空格分隔。

输出格式:

输出所有可能组合出来的2位数字的和。

输入样例:

3 2 8 5

输出样例:

330

这道题比我想象的要有善的多,我以为,我又要像昨天那样被折腾的死去活来,然后莫名其妙的A了,就是两层for循环算就行了

my思路:

int sum = 0;
// 2 和 8
sum = sum + 2 * 10 + 8; //28
sum = sum + 8 * 10 + 2; //82
// 2 和 5
sum = sum + 2 * 10 + 5; //25
sum = sum + 5 * 10 + 2; //52
// 8 和 5
sum = sum + 8 * 10 + 5; //85
sum = sum + 5 * 10 + 8; //58

这样子可以加快一下循环

AC代码:

#include <stdio.h>
#include <stdlib.h> int main(void)
{
int n, sum = 0;
scanf("%d", &n);
int arr[n]; for (int i = 0; i < n; i++)
{
scanf("%d", &arr[i]);
} for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
sum += (arr[i] * 10 + arr[j]);
sum += (arr[j] * 10 + arr[i]);
}
} printf("%d\n", sum); return 0;
}

PTA不易,诸君共勉!

P1056 组合数的和的更多相关文章

  1. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  2. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  3. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  4. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  5. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  6. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  7. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. UOJ263 【NOIP2016】组合数问题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

随机推荐

  1. 什么是Nib文件

    Nib文件是一种特殊类型的资源文件,它用于保存iPhone OS或Mac OS X应用程序的用户接口.Nib文件是Interface Builder文档.通常您会使用Interface Builder ...

  2. redhat 7.6 配置repo源

    vi /etc/yum.repos.d/base.repo          #编辑配置repo配置文件,如果没有则自动创建,没有影响 name=base     //源名字,起什么名都没影响 bas ...

  3. 「SPOJ1487」Query on a tree III

    「SPOJ1487」Query on a tree III 传送门 把树的 \(\text{dfs}\) 序抠出来,子树的节点的编号位于一段连续区间,然后直接上建主席树区间第 \(k\) 大即可. 参 ...

  4. 「CH6101」最优贸易

    「CH6101」最优贸易 传送门 考虑一种贪心的思想:我们要尽量买价格小的货物,并尽量高价转卖. 我们记 : \(mn[i]\) 为从点 \(1\) 走到点 \(i\) 经过的价格最小的货物的价格. ...

  5. 【快学springboot】6.WebMvcConfigurer配置静态资源和解决跨域

    勘误 有个朋友说:为什么我配置了WebMvcConfigurer,静态资源static依然能访问?! 这里是本人的失误,我在启动类中添加了EnableWebMvc注解(文章里却没有提及,最好的做法是放 ...

  6. 一 SSH整合:Spring整合Struts2的两种方式,struts.xml管理Action&Bean管理Action

    SSH回顾 1 引入jar包 Struts2的jar包 D:\Struts2\struts-2.3.35\apps\struts2-blank\WEB-INF\lib  开发基本包 Struts2有一 ...

  7. 视频游戏的连击 [USACO12JAN](AC自动机+动态规划)

    传送门 默认大家都学过trie与AC自动机. 先求出fail,对于每个节点维护一个sum,sum[u]待表从根到u所形成的字符串能拿到几分.显然sum[u]=sum[fail] + (u是几个字符串的 ...

  8. C 语言入门---第六章 C语言数组

    数组就是一些列具有相同类型的数据的集合,这些数据在内存中一次挨着存放,彼此之间没有缝隙. 我们可以将二维数组看作一个Excel表格,有行有列,length1 表示行数,length2 表示列数,要在二 ...

  9. ch6 列表和导航条

    为列表添加定制的项目符号 可使用list-style-image属性:缺点是对项目符号图像的位置的控制能力不强. 常用的方法:使用list-style-type来关闭项目符号,将定制的项目符号作为背景 ...

  10. 南邮CG-CTF Web记录

    MYSQL(利用精度,传参为小数) robots.txt中的代码: <?php if($_GET[id]) { mysql_connect(SAE_MYSQL_HOST_M . ':' . SA ...