题目链接:https://www.luogu.com.cn/problem/P3388

tarjan算法果然牛逼,时间复杂度是O(|V|+|E|),所以1e4个结点2e5条边的图完全不在话下orz orz

一个无向图求割点,该图不一定连通,所以要对没有访问过的点继续tarjan,这时候我就wa了几次,因为之前只用过一次tarjan,在参数设置里面我默认了从u=1开始建dfs树。每次只有根节点的father值等于其编号,这样就能唯一地标识它,学到了。其次在下面证明 tarjan中如果在处理回退边的时候用的是①、 low[u]=min(low[u],low[v])(强连通分量的用法)而不是②、low[u]=min(low[u],dfn[v])的话将会出现什么样的错误。

我们模拟两种Tarjan算法,一种是low[u] = min( low[u], low[v] );,一种是low[u] = min( low[u], dfn[v] );。(证明参考洛谷博客)

第1种:

① dfs(1),dfn[1] = 1,low[1] = 1。

② dfs(2),dfn[2] = 2,low[2] = 2。

③ dfs(3),dfn[3] = 3,low[3] = 3。

④ 发现回边 3 -> 1,low[3] = 1。

⑤ dfs(4),dfn[4] = 4,low[4] = 4。

⑥ dfs(5),dfn[5] = 5,low[5] = 5。

⑦ 发现回边 5 -> 3,low[5] = 1。

⑧ dfs(5)结束,回到dfs(4),low[4] = 1。

⑨ dfs(4)结束,回到dfs(3),low[3] = 1。

⑩ dfs(3)结束,至此未发现割点。

第2种:

① dfs(1),dfn[1] = 1,low[1] = 1。

② dfs(2),dfn[2] = 2,low[2] = 2。

③ dfs(3),dfn[3] = 3,low[3] = 3。

④ 发现回边 3 -> 1,low[3] = 1。

⑤ dfs(4),dfn[4] = 4,low[4] = 4。

⑥ dfs(5),dfn[5] = 5,low[5] = 5。

⑦ 发现回边 5 -> 3,low[5] = 3。

⑧ dfs(5)结束,回到dfs(4),low[4] = 3。

⑨ dfs(4)结束,回到dfs(3),low[4] >= dfn[3],发现割点3,low[3] = 1。

而这个图中,正确答案是:3是割点。

所以第1种方法就被我们愉快地Hack掉了。

其次,我在处理回退边的时候在条件中加上了dfn[v]<dfn[u],时间效率提高了大约10%,这是显而易见的,因为只有回退边到达的结点在父节点之前被访问,而且这个结点还不是已经处理过的fa结点。

代码如下:

 #include<bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
typedef unsigned long long ull;
#define pf printf
#define mem(a,b) memset(a,b,sizeof(a))
#define prime1 1e9+7
#define prime2 1e9+9
#define pi 3.14159265
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define scand(x) scanf("%llf",&x)
#define f(i,a,b) for(int i=a;i<=b;i++)
#define scan(a) scanf("%d",&a)
#define mp(a,b) make_pair((a),(b))
#define P pair<int,int>
#define dbg(args) cout<<#args<<":"<<args<<endl;
#define inf 0x3f3f3f3f
const int maxn=2e4+;
int n,m,t;
inline int read(){
int ans=,w=;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-;ch=getchar();}
while(isdigit(ch))ans=(ans<<)+(ans<<)+ch-'',ch=getchar();
return ans*w;
}
int low[maxn],dfn[maxn],iscut[maxn],head[maxn],nxt[];
int cnt=;
int ans=;
struct node{
int u,v;
}p[];
int e=;
void addedge(int x,int y)
{
p[e].u=x;
p[e].v=y;
nxt[e]=head[x];
head[x]=e++;
}
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++cnt;
int child=;
for(int i=head[u];~i;i=nxt[i])
{
int v=p[i].v;
if(!dfn[v])
{
if(fa==u)child++;
tarjan(v,u);
low[u]=min(low[v],low[u]);
if(low[v]>=dfn[u]&&u!=fa)iscut[u]=;
}
else if(dfn[v]<dfn[u]&&v!=fa)
{
low[u]=min(low[u],dfn[v]);
}
}
if(u==fa&&child>)iscut[u]=;
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
std::ios::sync_with_stdio(false);
n=read(),m=read();
int x,y;
cnt=;
ans=;
mem(low,);
mem(dfn,);
mem(iscut,);
mem(head,-);
mem(nxt,-);
f(i,,m)
{
x=read(),y=read();
addedge(x,y);
addedge(y,x);
}
f(i,,n)
{
if(!dfn[i])tarjan(i,i);//图不一定连通,所以每个连通分量都要tarjan一次
}
f(i,,n)
{
if(iscut[i])ans++;
}
pf("%d\n",ans);
f(i,,n)
if(iscut[i])pf("%d ",i);
return ;
}

洛谷3388 tarjan割点的更多相关文章

  1. 洛谷3388 【模板】割点 tarjan算法

    题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articul ...

  2. NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序

    原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...

  3. 洛谷 - P3469 - BLO-Blockade - 割点

    https://www.luogu.org/problem/P3469 翻译:一个原本连通的无向图,可以删除图中的一个点,求因为删除这个点所导致的不连通的有序点对的数量.或者说,删去这个点之后,各个连 ...

  4. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  5. 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图

    https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...

  6. 「洛谷3469」「POI2008」BLO-Blockade【Tarjan求割点】

    题目链接 [洛谷传送门] 题解 很显然,当这个点不是割点的时候,答案是\(2*(n-1)\) 如果这个点是割点,那么答案就是两两被分开的联通分量之间求组合数. 代码 #include <bits ...

  7. ⌈洛谷5058⌋⌈ZJOI2004⌋嗅探器【Tarjan】

    题目连接 [洛谷传送门] [LOJ传送门] 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心 ...

  8. tarjan算法比较详细的讲解&&tarjan常见疑难解答&&洛谷P2002 消息扩散题解

    因为有大佬写的比我更长更具体,所以我也就写写总结一下了 引入: 众所周知,很多图中有个东西名叫环. 对于这个东西很多算法都很头疼.(suchas 迪杰斯特拉) 更深层:环属于强联通分量(strongl ...

  9. 洛谷 P2194 HXY烧情侣【Tarjan缩点】 分析+题解代码

    洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里 ...

随机推荐

  1. 【bzoj3441】乌鸦喝水

    Source bzoj3441 Hint 请先思考后再展开 按被删除的顺序考虑每个点,然后按照题意模拟 Solution 请先思考后再展开 被删除的顺序一定是按照[能被操作的次数]为第一关键字,位置作 ...

  2. u-boot的环境变量详解

    u-boot的环境变量      u-boot的环境变量是使用u-boot的关键,它可以由你自己定义的,但是其中有一些也是大家经常使用,约定熟成的,有一些是u-boot自己定义的,更改这些名字会出现错 ...

  3. Android长按及拖动事件探究

    Android中长按拖动还是比较常见的.比如Launcher中的图标拖动及屏幕切换,ListView中item顺序的改变,新闻类App中新闻类别的顺序改变等.下面就这个事件做一下分析. 就目前而言,A ...

  4. C++走向远洋——28(项目三,时间类,2)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:time.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  5. 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(11.3)- FlexSPI NOR连接方式大全(RT1010)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1010的FlexSPI NOR启动的连接方式. 在写完 <FlexSPI NOR启动连接方式(RT1015/ ...

  6. NS域名工作原理及解析

    DNS域名工作原理及解析   0x00 定义 DNS( Domain Name System)是“域名系统”的英文缩写,它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.D ...

  7. iMX287A多种方法实现流水灯效果

    目录 1.流水灯在电子电路中的地位 2.硬件电路分析 3.先点个灯吧 4.shell脚本实现流水灯 5.ANSI C文件操作实现流水灯 6.Linux 系统调用实现流水灯 @ 1.流水灯在电子电路中的 ...

  8. SpringCloud - 全家桶

    先导篇:SpringCloud介绍篇 第一篇:注册中心Eureka 第二篇:服务提供与Rest+Ribbon调用 第三篇:服务提供与Feign调用 第四篇:熔断器Hystrix(断路器) 第五篇:熔断 ...

  9. 手写node可读流之流动模式

    node的可读流基于事件 可读流之流动模式,这种流动模式会有一个"开关",每次当"开关"开启的时候,流动模式起作用,如果将这个"开关"设置成 ...

  10. OpenFlow(OVS)下的“路由技术”

    前言 熟悉这款设备的同学,应该也快到不惑之年了吧!这应该是Cisco最古老的路由器了.上个世纪80年代至今,路由交换技术不断发展,但是在这波澜壮阔的变化之中,总有一些东西在嘈杂的机房内闪闪发光,像极了 ...