static RMQ
RMQ问题:对于长度为N的序列,询问区间[L,R]中的最值
RMQ(Range Minimum/Maximum Query),即区间最值查询。
常见解法:
1.朴素搜索
2.线段树
3.DP
4.神奇的笛卡尔树(https://www.cnblogs.com/jklongint/p/4777448.html?utm_source=tuicool)
1.朴素搜索
max=a[L];
for(int i=L+1;i<=R;i++)
if(max<a[i])
max=a[i];
}
2.线段树:https://www.cnblogs.com/jason2003/p/9676729.html
大概就是玩区间,将一个区间分为很多个小区间,分治的思想。
public class TestE {
public static void main(String[] args) {
int[]a= {3,4,5,1,2};
SenLin sl=new SenLin(a);
sl.buildTree(0, 4, 1);
System.out.println(sl.search(0, 4, 1));
}
}
class SenLin{
Tree[]N=new Tree[300];
int[] values;
public SenLin(int[]values) {
this.values=values;
}
public void buildTree(int l,int r,int u) {
N[u]=new Tree();
N[u].l=l;N[u].r=r;
if(l==r) {
N[u].max=values[l];
return;
}
buildTree(l,r+l>>1,2*u);
buildTree((r+l>>1)+1,r,2*u+1);
N[u].max=Math.max(N[2*u].max, N[2*u+1].max);
}
public int search(int l,int r,int u) {
if(N[u].l==l&&N[u].r==r)
return N[u].max;
if(r<=N[2*u].r) //在左孩子的范围里
return search(l,r,2*u);
if(l>=N[2*u+1].l)//在右孩子的范围里
return search(l,r,2*u+1);
int mid=(N[u].l+N[u].r)>>1;
return Math.max(search(l,mid,2*u),search(mid+1,r,2*u+1));
}
}
class Tree{
int l;
int r;
int max;
}
3.DP
3.1预处理(时间复杂度O(nlogn))
建立dp数组,dp[i][j]表示从i开始长度为2j的区间中的最值(DP的状态)。当dp[i][0]就是从i开始长度为1的区间,就是它本身。(DP的初始值)
目的是将求从i长度为2j的大问题可以分为两个长度为2(j-1)的小问题,即[i,i+2j-1-1],[i+2j-1,i+2j-1+2j-1-1]=[i+2j-1,i+2j-1]。
因为r-l+1这个区间长度可能不是2的整数次幂,但是可以有重叠的部分,并不影响。
则可以得到:dp[i][j]=max(dp[i][j-1],dp[i+2j-1][j-1])(DP的状态转移方程)
//dp初始条件
for(int i=0;i<n;i++)
dp[i][0]=a[i];
//填表
for(int j=1;(1<<j)<=N;j++)
for(int i=0;i+(1<<j-1)<=N;i++)
dp[i][j]=max(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
此处注意内外层循环,这个填表过程相当于竖着填表。
3.2查询(时间复杂度O(1))
我们回到题目:对于长度为N的序列,询问区间[L,R]中的最值,假设这里我们需要的是最大值,毋庸置疑,rmq=dp[L][m],就是从L开始,长度为2m,r-l+1=2m解得m=log2(r-l+1)问题是前文中提到得l-r+1不一定是2的整数次幂.
所以我们将其转换为求两个区间这两个区间为[l,l+2k-1][r-2k+1,r],一个确保了开头为l,另一个确保了结尾为r,得问题:rmq=max(dp[L][k],dp[r-2k+1][k]),这个2k可以是[l,r]之间重叠的部分,保证覆盖[l,r]之间所有的数。
我们要维护的两个区间是[l,l+2k-1][r-2k+1,r],为了保证覆盖[l,r]之间所有的数就要满足:l+2k-1>=r-2k+1
化简得:k>=log2(r-l+1)-1,所以k=log2(r-l+1)-1时,可以满足求得[l,r]之间得最值问题
int k=log2(r-l+1)-1
rmq=max(dp[l][k],dp[r-(1<<k)+1][k]);
static RMQ的更多相关文章
- 算法编程Algos Programming
算法编程Algos Programming 不同算法的集合,用于编程比赛,如ACM ICPC. 算法按主题划分.大多数算法都可以从文件中按原样运行.每种算法都有一个参考问题,并对其时间和空间复杂度作了 ...
- BZOJ 3489: A simple rmq problem
3489: A simple rmq problem Time Limit: 40 Sec Memory Limit: 600 MBSubmit: 1594 Solved: 520[Submit] ...
- UVa 12299 RMQ with Shifts(移位RMQ)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- RMQ (Range Minimal Query) 问题 ,稀疏表 ST
RMQ ( 范围最小值查询 ) 问题是一种动态查询问题,它不需要修改元素,但要及时回答出数组 A 在区间 [l, r] 中最小的元素值. RMQ(Range Minimum/Maximum Query ...
- TOJ 4325 RMQ with Shifts / 线段树单点更新
RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS 运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...
- UVa 12299 RMQ with Shifts(线段树)
线段树,没了.. ----------------------------------------------------------------------------------------- # ...
- BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )
取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...
- How far away ? HDU - 2586 【LCA】【RMQ】【java】
题目大意:求树上任意两点距离. 思路: dis[i]表示i到根的距离(手动选根),则u.v的距离=dis[u]+dis[v]-2*dis[lca(u,v)]. lca:u~v的dfs序列区间里,深度最 ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
随机推荐
- Android | 教你如何在安卓上实现通用卡证识别,一键各种卡绑定
目录 前言 通用卡证识别的应用场景 如何使用通用卡证识别服务 集成通用卡证识别服务的关键流程 开发实战 1 开发准备 1.1 在项目级gradle里添加华为maven仓 1.2 在应用级的build. ...
- docx4j docx转html
不好用,转完问题挺多,百度还找不到资料头疼.public static void docxToHtml(String fileUrl) throws Exception { String path = ...
- Django文档阅读-Day1
Django文档阅读-Day1 Django at a glance Design your model from djano.db import models #数据库操作API位置 class R ...
- Spring Data REST不完全指南(三)
上一篇我们介绍了使用Spring Data REST时的一些高级特性,以及使用代码演示了如何使用这些高级的特性.本文将继续讲解前面我们列出来的七个高级特性中的后四个.至此,这些特性能满足我们大部分的接 ...
- amba H2平台用PWM控制LCD背光
ambarella H2系列Soc的GPIO口能作PWM使用的个数有限(GPIO0-GPIO3),从PRM里GPIO: Function Selection章节可以得到如何配置GPIO为PWM功能. ...
- Jenkins(3)- 安装Jenkins过程中遇到问题的排查思路
如果想从头学起Jenkins的话,可以看看这一系列的文章哦 https://www.cnblogs.com/poloyy/category/1645399.html 安装Jenkins过程中,可能会遇 ...
- mac使用brew安装mysql5.7
安装mysql5.7 brew install mysql@5.7 设置环境变量(可能安装完自动生成过了,可以cat ~/.zshrc看一下,有了就不用添加了 ) echo 'export PATH= ...
- 十六, Oracle约束
前言 数据的完整性用于确保数据库数据遵从一定的商业和逻辑规则,在oracle中,数据完整性可以使用约束.触发器.应用程序(过程.函数)三种方法来实现,在这三种方法中,因为约束易于维护,并且具有最好的性 ...
- Apache多处理模块
介绍 Apache HTTP 服务器被设计为一个功能强大,并且灵活的 web 服务器, 可以在很多平台与环境中工作.不同平台和不同的环境往往需要不同 的特性,或可能以不同的方式实现相同的特性最有效率. ...
- 模糊c-means算法的c++实现
首先输入点的个数,维度,分类数目 我的代码FCM中主要过程如下: 1:(init_c函数)随机初始化聚类中心 2:(comp_dis函数)计算每个点到每个聚类距离 dis[i][j] 表示i点到j聚类 ...