static RMQ
RMQ问题:对于长度为N的序列,询问区间[L,R]中的最值
RMQ(Range Minimum/Maximum Query),即区间最值查询。
常见解法:
1.朴素搜索
2.线段树
3.DP
4.神奇的笛卡尔树(https://www.cnblogs.com/jklongint/p/4777448.html?utm_source=tuicool)
1.朴素搜索
max=a[L];
for(int i=L+1;i<=R;i++)
if(max<a[i])
max=a[i];
}
2.线段树:https://www.cnblogs.com/jason2003/p/9676729.html
大概就是玩区间,将一个区间分为很多个小区间,分治的思想。
public class TestE {
public static void main(String[] args) {
int[]a= {3,4,5,1,2};
SenLin sl=new SenLin(a);
sl.buildTree(0, 4, 1);
System.out.println(sl.search(0, 4, 1));
}
}
class SenLin{
Tree[]N=new Tree[300];
int[] values;
public SenLin(int[]values) {
this.values=values;
}
public void buildTree(int l,int r,int u) {
N[u]=new Tree();
N[u].l=l;N[u].r=r;
if(l==r) {
N[u].max=values[l];
return;
}
buildTree(l,r+l>>1,2*u);
buildTree((r+l>>1)+1,r,2*u+1);
N[u].max=Math.max(N[2*u].max, N[2*u+1].max);
}
public int search(int l,int r,int u) {
if(N[u].l==l&&N[u].r==r)
return N[u].max;
if(r<=N[2*u].r) //在左孩子的范围里
return search(l,r,2*u);
if(l>=N[2*u+1].l)//在右孩子的范围里
return search(l,r,2*u+1);
int mid=(N[u].l+N[u].r)>>1;
return Math.max(search(l,mid,2*u),search(mid+1,r,2*u+1));
}
}
class Tree{
int l;
int r;
int max;
}
3.DP
3.1预处理(时间复杂度O(nlogn))
建立dp数组,dp[i][j]表示从i开始长度为2j的区间中的最值(DP的状态)。当dp[i][0]就是从i开始长度为1的区间,就是它本身。(DP的初始值)
目的是将求从i长度为2j的大问题可以分为两个长度为2(j-1)的小问题,即[i,i+2j-1-1],[i+2j-1,i+2j-1+2j-1-1]=[i+2j-1,i+2j-1]。
因为r-l+1这个区间长度可能不是2的整数次幂,但是可以有重叠的部分,并不影响。
则可以得到:dp[i][j]=max(dp[i][j-1],dp[i+2j-1][j-1])(DP的状态转移方程)
//dp初始条件
for(int i=0;i<n;i++)
dp[i][0]=a[i];
//填表
for(int j=1;(1<<j)<=N;j++)
for(int i=0;i+(1<<j-1)<=N;i++)
dp[i][j]=max(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
此处注意内外层循环,这个填表过程相当于竖着填表。
3.2查询(时间复杂度O(1))
我们回到题目:对于长度为N的序列,询问区间[L,R]中的最值,假设这里我们需要的是最大值,毋庸置疑,rmq=dp[L][m],就是从L开始,长度为2m,r-l+1=2m解得m=log2(r-l+1)问题是前文中提到得l-r+1不一定是2的整数次幂.
所以我们将其转换为求两个区间这两个区间为[l,l+2k-1][r-2k+1,r],一个确保了开头为l,另一个确保了结尾为r,得问题:rmq=max(dp[L][k],dp[r-2k+1][k]),这个2k可以是[l,r]之间重叠的部分,保证覆盖[l,r]之间所有的数。
我们要维护的两个区间是[l,l+2k-1][r-2k+1,r],为了保证覆盖[l,r]之间所有的数就要满足:l+2k-1>=r-2k+1
化简得:k>=log2(r-l+1)-1,所以k=log2(r-l+1)-1时,可以满足求得[l,r]之间得最值问题
int k=log2(r-l+1)-1
rmq=max(dp[l][k],dp[r-(1<<k)+1][k]);
static RMQ的更多相关文章
- 算法编程Algos Programming
算法编程Algos Programming 不同算法的集合,用于编程比赛,如ACM ICPC. 算法按主题划分.大多数算法都可以从文件中按原样运行.每种算法都有一个参考问题,并对其时间和空间复杂度作了 ...
- BZOJ 3489: A simple rmq problem
3489: A simple rmq problem Time Limit: 40 Sec Memory Limit: 600 MBSubmit: 1594 Solved: 520[Submit] ...
- UVa 12299 RMQ with Shifts(移位RMQ)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- RMQ (Range Minimal Query) 问题 ,稀疏表 ST
RMQ ( 范围最小值查询 ) 问题是一种动态查询问题,它不需要修改元素,但要及时回答出数组 A 在区间 [l, r] 中最小的元素值. RMQ(Range Minimum/Maximum Query ...
- TOJ 4325 RMQ with Shifts / 线段树单点更新
RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS 运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...
- UVa 12299 RMQ with Shifts(线段树)
线段树,没了.. ----------------------------------------------------------------------------------------- # ...
- BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )
取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...
- How far away ? HDU - 2586 【LCA】【RMQ】【java】
题目大意:求树上任意两点距离. 思路: dis[i]表示i到根的距离(手动选根),则u.v的距离=dis[u]+dis[v]-2*dis[lca(u,v)]. lca:u~v的dfs序列区间里,深度最 ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
随机推荐
- python selenium模块 css定位
selenium是python的非标准库,使用时需要下载安装 安装命令 pip install selenium selenium是python的自动化测试模块,可以模拟浏览器的行为 所以在使用之前 ...
- 详解 通道 (Channel 接口)
在本篇博文中,本人主要讲解NIO 的两个核心点 -- 缓冲区(Buffer) 和 通道 (Channel)之一的 缓冲区(Buffer), 有关NIO流的其他知识点请观看本人博文<详解 NIO流 ...
- 9. js屏幕截图
html2canvas 该脚本允许您直接在用户浏览器上截取网页或部分网页的“屏幕截图”.屏幕截图基于DOM,因此它可能不是真实表示的100%准确,因为它没有制作实际的屏幕截图,而是根据页面上可用的信息 ...
- JAVA快速排序代码实现
通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数.然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速 ...
- 使用NLP从文章中自动提取关键字
背景 在研究和新闻文章中,关键词构成了一个重要的组成部分,因为它们提供了文章内容的简洁表示.关键词在从信息检索系统,书目数据库和搜索引擎优化中定位文章方面也起着至关重要的作用.关键词还有助于将文章分类 ...
- Java中Double保留小数位
1.能四舍五入 double d = 114.145; d = (double) Math.round(d * 100) / 100; System.out.println(d); 2. BigDec ...
- 监控CPU与GPU的工具
1.sensor:可以显示包括cpu在内的所有传感器的当前读数 使用sensors可以检测到cpu的温度,风扇的风速度,电压等. 2.Glances使用Python写的跨平台的curses的检测工具. ...
- Linux 文件常用权限
-rw------- (600) 只有所有者才有读和写的权限 -rw-r--r-- (644) 只有所有者才有读和写的权限,组群和其他人只有读的权限 -rwx------ (700) 只有所有者才有读 ...
- ELK6.3版本安装部署
一.Elasticsearch 安装 1.部署系统以及环境准备 cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) uname - ...
- OpenCV学习(4)——动态结构
学习一个新知识,无外乎学习它本身和它的工具.OpenCV提供许多内置的结构及处理函数,非常值得学习. 内存存储 在OpenCV中,内存存储器是一个可以用来存储序列.数组和图像的动态增长的数据结构.它由 ...