[hdu4629 Burning]三角形面积并,扫描线
题意:给n个三角形,分别求覆盖1次~n次的总面积
思路: 对每个y坐标作一条平行于x轴的直线,按直线从下往上处理,每两条直线之间为若干梯形(也可以是三角形)首尾相连的情况,从左扫到右时,用一个变量cnt记录当前区域被覆盖的次数,遇到入边cnt++,遇到出边cnt--,边扫边更新答案。入边表示这条边的右边在三角形内部,出边表示这条边的右边在三角形的外部。思路并不复杂,只是代码稍长点。
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; //#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=;i<a.size();i++)a[i]=b[i];} const double PI = acos(-1.0);
const int INF = 1e9 + ;
const double EPS = 1e-8; /* -------------------------------------------------------------------------------- */ const int maxn = ; int dcmp(double a) {
if (abs(a) < EPS) return ;
return a > ? : -;
} struct Point {
double x, y;
void read() {
int x, y;
scanf("%d%d", &x, &y);
this->x = x;
this->y = y;
}
Point(double x, double y) {
this->x = x;
this->y = y;
}
Point() {}
Point operator - (const Point &that) const {
return Point(this->x - that.x, this->y - that.y);
}
bool operator < (const Point &that) const {
return dcmp(this->y - that.y) < || dcmp(this->y - that.y) == &&
dcmp(this->x - that.x) < ;
}
Point operator * (const double &m) const {
return Point(this->x * m, this->y * m);
}
};
struct Segment {
Point a, b;
Segment(Point a, Point b) {
this->a = a;
this->b = b;
}
Segment() {}
bool operator < (const Segment &that) const {
return dcmp(this->a.x + this->b.x - that.a.x - that.b.x) < ;
}
};
Point point[maxn * maxn * ];
Segment seg[maxn * ];
int type[maxn * ];
double ans[maxn]; double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} bool onMid(Point a, Point b, Point c) {
return dcmp(cross(c - a, b - a)) == ;
}
bool onLeft(Point a, Point b, Point c) {
return dcmp(cross(c - a, b - a)) < ;
}
bool Intersect(Segment A, Segment B) {
int r1 = dcmp(cross(A.b - A.a, B.a - A.a));
int r2 = dcmp(cross(A.b - A.a, B.b - A.a));
int r3 = dcmp(cross(B.b - B.a, A.a - B.a));
int r4 = dcmp(cross(B.b - B.a, A.b - B.a));
return (r1 ^ r2) || (r3 ^ r4);
}
Point getLineIntersection(Segment A, Segment B) {
Point u = A.a - B.a, v = A.b - A.a, w = B.b - B.a;
double t = cross(w, u) / cross(v, w);
return A.a - v * -t;
}
double Area(Segment A, Segment B) {
return fabs((A.a.x - B.a.x + A.b.x - B.b.x) * (A.a.y - A.b.y) / );
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int T, n, cs, cp;
cin >> T;
while (T --) {
cin >> n;
cp = cs = ;
for (int i = ; i < n; i ++) {
Point p[];
for (int j = ; j < ; j ++) p[j].read();
if (onMid(p[], p[], p[])) continue;
sort(p, p + );
seg[cs ++] = Segment(p[], p[]);
seg[cs ++] = Segment(p[], p[]);
seg[cs ++] = Segment(p[], p[]);
if (onLeft(p[], p[], p[])) {
type[cs - ] = type[cs - ] = ;
type[cs - ] = -;
}
else {
type[cs - ] = type[cs - ] = -;
type[cs - ] = ;
}
}
for (int i = ; i < cs; i ++) {
for (int j = i + ; j < cs; j ++) {
if (Intersect(seg[i], seg[j]))
point[cp ++] = getLineIntersection(seg[i], seg[j]);
}
}
sort(point, point + cp);
vector<double> Y;
for (int i = ; i < cp; i ++) {
if (!i || dcmp(point[i].y - point[i - ].y) != ) Y.pb(point[i].y);
}
fillchar(ans, );
for (int i = ; i < Y.size(); i ++) {
vector<pair<Segment, int> > S;
for (int j = ; j < cs; j ++) {
if (dcmp(seg[j].a.y - Y[i - ]) <= && dcmp(seg[j].b.y - Y[i]) >= ) {
Point a = seg[j].a, b = seg[j].b;
double d = (b.x - a.x) / (b.y - a.y);
double x1 = a.x + d * (Y[i - ] - a.y), x2 = a.x + d * (Y[i] - a.y);
S.pb(mp(Segment(Point(x1, Y[i - ]), Point(x2, Y[i])), type[j]));
}
}
sort(all(S));
int cnt = ;
for (int j = ; j < S.size(); j ++) {
if (cnt) ans[cnt] += Area(S[j - ].X, S[j].X);
cnt += S[j].Y;
}
}
for (int i = ; i <= n; i ++) {
printf("%.10f\n", ans[i]);
}
} return ;
}
[hdu4629 Burning]三角形面积并,扫描线的更多相关文章
- bzoj 1845: [Cqoi2005] 三角形面积并 扫描线
1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 848 Solved: 206[Submit][Statu ...
- BZOJ1845 [Cqoi2005] 三角形面积并 扫描线 计算几何
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1845 题意概括 给出n个三角形,求其面积并. 题解 有一个很经典的扫描线题目:矩形面积并.那个比较 ...
- BZOJ 1845: [Cqoi2005] 三角形面积并 [计算几何 扫描线]
1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 1151 Solved: 313[Submit][Stat ...
- 【BZOJ1845】[Cqoi2005] 三角形面积并 几何+扫描线
[BZOJ1845][Cqoi2005] 三角形面积并 Description 给出n个三角形,求它们并的面积. Input 第一行为n(N < = 100), 即三角形的个数 以下n行,每行6 ...
- CQOI2005 三角形面积并 和 POJ1177 Picture
1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 1664 Solved: 443[Submit][Stat ...
- ytu 1058: 三角形面积(带参的宏 练习)
1058: 三角形面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 190 Solved: 128[Submit][Status][Web Boar ...
- UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)
Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...
- OpenJudge计算概论-计算三角形面积【海伦公式】
/*============================================== 计算三角形面积 总时间限制: 1000ms 内存限制: 65536kB 描述 平面上有一个三角形,它的 ...
- nyoj 67 三角形面积【三角形面积公式】
三角形面积 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 给你三个点,表示一个三角形的三个顶点,现你的任务是求出该三角形的面积 输入 每行是一组测试数据,有6个 ...
随机推荐
- 微信小程序 —搜索框
wxSearch优雅的微信小程序搜索框 一.功能 支持自定义热门key 支持搜索历史 支持搜索建议 支持搜索历史(记录)缓存 二.使用 1.将wxSearch文件夹整个拷贝到根目录下 2.引入 // ...
- ppt和pptx转图片完整代码,解决2003版和2007版中文乱码问题
引入所需依赖,注意poi版本,新版本不支持,最好使用和我一样的版本. <!-- https://mvnrepository.com/artifact/org.apache.poi/poi --& ...
- Maven+JSP+Servlet+JDBC+Redis+Mysql实现的黑马旅游网
项目简介 项目来源于:https://gitee.com/haoshunyu/travel 本系统是基于Maven+JSP+Servlet+JdbcTemplate+Redis+Mysql实现的旅游网 ...
- C# WCF的通信模式
wcf 通信模式一般分为三种; 1,请求/响应模式 2,单工模式 3,双工模式 一,请求/响应模式 请求/响应通信是指客户端向服务端发送消息后,服务端会向客户端发送响应.这也意味着在接收到服务的响应以 ...
- vector做形参时的三种传参方式
vector在做形参的时候传参的方式和普通的变量是一样的,要么传值.要么传引用.要么传指针. 现在分别定义三个以vector为形参的函数: (1) fun1(vector <int> v) ...
- qt tableview 选择模式
QAbstractItemView::SingleSelection QAbstractItemView::ContiguousSelection QAbstractItemView::Extende ...
- 数据库SQL---数据库、基本表、视图、索引的定义、修改、删除
1.SQL(结构化查询语言)的组成:数据定义语言DDL.数据操纵语言DML.数据控制语言DCL.其他. 2.SQL语言的功能: 1)数据查询:SELECT 2)数据定义:CREATE DROP ...
- 双链表【参照redis链表结构】
参照了Redis里面的双链表结构,可以说是完全复制粘贴,redis的双链表还是写的很通俗易懂的,没有什么花里胡哨的东西,但是redis还有个iter迭代器的结构来遍历链表.我这里就没有实现了,只是实现 ...
- 理解分布式一致性:拜占庭容错与PBFT
理解分布式一致性:拜占庭容错与PBFT 拜占庭问题 拜占庭容错BFT PBFT(Practical Byzantine Fault Tolerance) why 3f+1 ? PBFT 的优点 PBF ...
- Scala的存在类型
Scala的存在类型 存在类型也叫existential type,是对类型做抽象的一种方法.可以在你不知道具体类型的情况下,就断言该类型存在. 存在类型用_来表示,你可以把它看成java中的?. 下 ...