R box-cox变换 《回归分析与线性统计模型》page100
> rm(list = ls())
> library(openxlsx)
> electric= read.xlsx("data101.xlsx",sheet = 1) #打开文件
> electric
No x y
1 1 679 0.79
2 2 292 0.44
3 3 1012 0.56
4 4 493 0.79
5 5 582 2.70
6 6 1156 3.64
7 7 997 4.73
8 8 2189 9.50
9 9 1097 5.34
10 10 2078 6.85
11 11 1818 5.84
12 12 1700 5.21
13 13 747 3.25
14 14 2030 4.43
15 15 1643 3.16
16 16 414 0.50
17 17 354 0.17
18 18 1276 1.88
19 19 745 0.77
20 20 435 1.39
21 21 540 0.56
22 22 874 1.56
23 23 1543 5.28
24 24 1029 0.64
25 25 710 4.00
26 26 1434 0.31
27 27 837 4.20
28 28 1748 4.88
29 29 1381 3.48
30 30 1428 7.58
31 31 1255 2.63
32 32 1777 4.99
33 33 370 0.59
34 34 2316 8.19
35 35 1130 4.79
36 36 463 0.51
37 37 770 1.74
38 38 724 4.10
39 39 808 3.94
40 40 790 0.96
41 41 783 3.29
42 42 406 0.44
43 43 1242 3.24
44 44 658 2.14
45 45 1746 5.71
46 46 468 0.64
47 47 1114 1.90
48 48 413 0.51
49 49 1787 8.33
50 50 3560 14.94
51 51 1495 5.11
52 52 2221 3.85
53 53 1526 3.93
求λ的第一种方法,用包
library(MASS) #MASS包有box-cox变换
op<-par(mfrow=c(2,2),mar=0.4+c(4,4,1,1),oma=c(0,0,2,0)) #将四张图放在一起,调整边界。(以后也采用此行)
#绘制拟合值与残差的散点图(图1)
plot(fitted(lm4.sol),resid(lm4.sol),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals")
#box-cox变换
a1=boxcox(lm4.sol,lambda=seq(0,1,by=0.1)) #进行box-cox变换(图2)

根据box-cox指令画出来的图,λ=0.5包含在区间中,于是令λ=0.5
#### lambda=0.5 ####
lambda=0.5
Ylam<-(y^lambda-1)/lambda #对回归响应变量Y作变换
lm.lam<-lm(Ylam~x) #对变换后的响应变量与回归变量作回归
summary(lm.lam)
#绘制拟合值与残差的散点图
plot(fitted(lm.lam),resid(lm.lam),cex=1.2,pch=21,col="red",bg="orange",xlab="Fitted value",ylab="Residuals") beta0=lm.lam$coeff[1]
beta1=lm.lam$coeff[2]
#绘制变换后函数曲线
curve( (1+lambda*(beta0+beta1*x))^(1/lambda),from=min(x),to=max(x),col="blue",lwd=2,xlab="能耗",ylab="用电需求量")
points(x,y,pch=21,cex=1.2,col="red", bg="orange")
mtext("Box-Cox Transformations",outer=T,cex=1.5) #四幅图的总标题
求λ的第二种方法
(1)对给定的λ,计算z(λ)
(2)求残差平方和
(3)对一系列的λ值,重复上述步骤,得到响应的残差平方和。以λ为横轴,残差平方和为纵轴,做出响应的曲线,值观看出使得残差平方和最小的λ
(4)求β*
lamb=c(-2,-1,-0.5,0,0.125,0.25,0.375,0.5,0.625,0.75,1,2)
### lamb=seq(-1,1,length=100)
n=length(x) #数据x的长度
k=length(lamb) #数据λ的长度
z=numeric(n) #构造一个长度为n的数字向量
SS=numeric(k) #构造一个长度为k的数字向量
X=matrix(c(rep(1,n),x),nr=n,nc=2) #设计矩阵
N=diag(n)-X%*%solve(crossprod(X))%*%t(X) #I-H #求y的变换后的值
for(i in 1:k){
if(lamb[i]==0){
z= log(y)*(prod(y)^(1/n))
} else{
z=(y^lamb[i])/((prod(y))^((lamb[i]-1)/n))
}
SS[i]=z %*% N %*% z
}
SS ###SS[5]=1.84684 lamb=0.125
plot(lamb,SS,type='l')
R box-cox变换 《回归分析与线性统计模型》page100的更多相关文章
- R语言 方差稳定化变换与线性变换 《回归分析与线性统计模型》page96
> rm(list = ls()) > A=read.csv("data96.csv") > A Y N 1 11 0.0950 2 7 0.1920 3 7 0 ...
- R WLS矫正方差非齐《回归分析与线性统计模型》page115
rm(list = ls()) A = read.csv("data115.csv") fm = lm(y~x1+x2,data = A) coef(fm) A.cooks = c ...
- R语言 线性回归分析实例 《回归分析与线性统计模型》page72
y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > librar ...
- R 《回归分析与线性统计模型》page119,4.2
rm(list = ls()) library(openxlsx) library(MASS) data = read.xlsx("xiti_4.xlsx",sheet = 2) ...
- R 《回归分析与线性统计模型》page93.6
rm(list = ls()) #数据处理 library(openxlsx) library(car) library(lmtest) data = read.xlsx("xiti4.xl ...
- R 对数变换 《回归分析与线性统计模型》page103
BG:在box-cox变换中,当λ = 0时即为对数变换. 当所分析变量的标准差相对于均值而言比较大时,这种变换特别有用.对数据作对数变换常常起到降低数据波动性和减少不对称性的作用..这一变换也能有效 ...
- R 《回归分析与线性统计模型》page164 单变量、多变量多项式模型
--多项式回归模型 --单变量多项式模型 --多变量多项式模型 rm(list = ls()) library(openxlsx) library(leaps) #单变量多项式模型# data = r ...
- R 《回归分析与线性统计模型》page141,5.2
rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data141.xlsx") ...
- R 《回归分析与线性统计模型》page140,5.1
rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") ...
随机推荐
- spring security几大核心组件
一.SecurityContext 安全上下文,用户通过Spring Security 的校验之后,验证信息存储在SecurityContext中 SecurityContext接口只定义了两个方法, ...
- 使用display inline-block 布局时,出现的间距问题的解决办法和相关说明
在CSS中,块级对象元素会单独占一行显示,多个block元素会各自新起一行.而内联对象元素前后不会产生换行,一系列inline元素都在一行内显示,直到该行排满. 使用 display inline-b ...
- nodejs的C++扩展中实现异步回调
在nodejs的官方网站中有关于C++扩展的详细说明,其中包含了从"hello world"到对象封装的一系列示例.其中的“callback”节是关于回调函数的,美中不足的是,这个 ...
- iOS沙盒目录简介、沙盒路径获取
一.沙盒的意义 出于安全的考虑,iOS系统的沙盒机制规定每个应用只能访问当前沙盒目录下面的文件.但是对于一些用户级别的数据,考虑到很多软件都需要使用其中的数据,用户可以通过对当前的软件授权,让当前的应 ...
- JAVA并发编程之线程安全性
1.一个对象是否是线程安全的,取决于它是否被多个线程访问.想要使得线程安全,需要通过同步机制来协同对对象可变状态的访问. 2.修复多线程访问可变状态变量出现的错误:1.程序间不共享状态变量 2.状态变 ...
- 进程管理与SELinux
进程(process): 将程序与进程的总结: 程序 (program):通常为 binary program ,放置在储存媒体中 (如硬盘.光盘.软盘.磁带等), 为实体文 件的型态存在 ...
- 第1节 kafka消息队列:11、kafka的数据不丢失机制,以及kafka-manager监控工具的使用;12、课程总结
12.kafka如何保证数据的不丢失 12.1生产者如何保证数据的不丢失 kafka的ack机制:在kafka发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到 如果是同步模 ...
- Android问题:ScrollView默认位置不是最顶部最全解决方案
描述: Scrollview里面嵌套了一个listview ,这是开发中最寻常的一种布局,遇到的问题是:在这个Scrollview页面默认的起始位置不是最顶部,而是listview的底部. 原因: 在 ...
- keil 生成bin文件
在 User 配置页面中,提供了三种类型的用户指令输入框,在不同组的框输入指令,可控制指令的执行时间,分别是编译前(Before Compile c/c++ file).构建前(Before Bui ...
- hadoop常用的操作指令
-help:查看帮助 hadoop fs -help rm -rm [-f] [-r|-R] [-skipTrash] <src> ... : Delete all files that ...