HDU 2295.Radar (DLX重复覆盖)
2分答案+DLX判断可行
不使用的估计函数的可重复覆盖的搜索树将十分庞大
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std; #define FOR(i,A,s) for(int i = A[s]; i != s; i = A[i])
#define exp 1e-8 const int MAX = , MAXR = , MAXC = ;
int n, m, k, t; struct DLX {
int n, Size;//Size为尾指针,真正大小
int row[MAX], col[MAX];//记录每个点的行列
int U[MAX], D[MAX], R[MAX], L[MAX]; //4个链表
int S[MAXC];//每列1的个数
int ncnt, ans[MAXR];
void init (int n) {
this->n = n;
//增加n+1个辅助链表,从0到n
for (int i = ; i <= n; i++)
U[i] = D[i] = i, L[i] = i - , R[i] = i + ;
R[n] = , L[] = n; //头尾相接
Size = n + ;
memset (S, , sizeof S);
}
//逐行添加
void addRow (int r, int columns[]) {
int first = Size;
for (int i = ; i <= n ; i++) {
if (columns[i] == ) continue;
int c = i;
L[Size] = Size - , R[Size] = Size + ;
U[Size] = U[c], D[Size] = c;//插入第c列
D[U[c]] = Size, U[c] = Size; //注意顺序!!!
row[Size] = r, col[Size] = c;
Size++, S[c]++;
}
if (Size > first)
R[Size - ] = first, L[first] = Size - ; //头尾相接
}
void Remove (int c) {
//精确覆盖
// L[R[c]] = L[c], R[L[c]] = R[c];
// FOR (i, D, c)
// FOR (j, R, i)
// U[D[j]] = U[j], D[U[j]] = D[j], --S[col[j]];
//重复覆盖
for (int i = D[c]; i != c; i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
}
void Restore (int c) {
// FOR (i, U, c)
// FOR (j, L, i)
// ++S[col[j]], U[D[j]] = j, D[U[j]] = j;
// L[R[c]] = c, R[L[c]] = c;
//重复覆盖
for (int i = U[c]; i != c; i = U[i])
L[R[i]] = R[L[i]] = i;
}
bool v[MAX];
int ff()
{
int ret = ;
for (int c = R[]; c != ; c = R[c]) v[c] = true;
for (int c = R[]; c != ; c = R[c])
if (v[c])
{
ret++;
v[c] = false;
for (int i = D[c]; i != c; i = D[i])
for (int j = R[i]; j != i; j = R[j])
v[col[j]] = false;
}
return ret;
}
bool dfs (int d) {
if (d + ff() > k) return ;
if (R[] == ) {
ncnt = d;
return d <= k;
}
int c = R[];
for (int i = R[]; i != ; i = R[i])
if (S[i] < S[c])
c = i;
//Remove (c);//精确覆盖
FOR (i, D, c) {
Remove (i);//重复覆盖
ans[d] = row[i];
//FOR (j, R, i) Remove (col[j]);
FOR (j, R, i) Remove (j);
if (dfs (d + ) ) return ;
//FOR (j, L, i) Restore (col[j]);
FOR (j, L, i) Restore (j);
Restore (i);//重复覆盖
}
//Restore (c);//精确覆盖
return ;
}
bool solve (vector<int> &v) {
v.clear();
if (!dfs () ) return ;
for (int i = ; i < ncnt; i++) v.push_back (ans[i]);
return ;
}
} f;
struct node {
int x, y;
} g[], Ra[];
int columns[][];
double dis[][];
inline double getdis (node a, node b) {
return sqrt (double ( (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) ) );
}
bool make (double mid) {
f.init (n);
for (int i = ; i <= m; i++)
for (int j = ; j <= n; j++)
columns[i][j] = dis[i][j] <= mid;
for (int i = ; i <= m; i++)
f.addRow (i, columns[i]);
return f.dfs ();
}
int main() {
scanf ("%d", &t);
while (t--) {
scanf ("%d %d %d", &n, &m, &k);
for (int i = ; i <= n; i++)
scanf ("%d %d", &g[i].x, &g[i].y);
for (int i = ; i <= m; i++)
scanf ("%d %d", &Ra[i].x, &Ra[i].y);
double l = 1e9, r = ;
for (int i = ; i <= m; i++)
for (int j = ; j <= n; j++) {
dis[i][j] = getdis (Ra[i], g[j]);
l = min (dis[i][j], l), r = max (r, dis[i][j]);
}
double ans = -;
while (r - l > 1e-) {
double mid = (r + l) / .;
if (make (mid) ) {
ans = mid;
r = mid - exp;
}
else
l = mid + exp;
}
printf ("%.6f\n", ans);
}
return ;
}
HDU 2295.Radar (DLX重复覆盖)的更多相关文章
- HDU 2295 Radar (重复覆盖)
Radar Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 2295 Radar (DLX + 二分)
Radar Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- [ACM] HDU 2295 Radar (二分法+DLX 重复覆盖)
Radar Problem Description N cities of the Java Kingdom need to be covered by radars for being in a s ...
- HDU 2295 Radar 重复覆盖 DLX
题意: N个城市,M个雷达站,K个操作员,问雷达的半径至少为多大,才能覆盖所有城市.M个雷达中最多只能有K个同时工作. 思路: 二分雷达的半径,看每个雷达可以覆盖哪些城市,然后做重复覆盖,判断这个半径 ...
- HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )
以下转自 这里 : 最小支配集问题:二分枚举最小距离,判断可行性.可行性即重复覆盖模型,DLX解之. A*的启发函数: 对当前矩阵来说,选择一个未被控制的列,很明显该列最少需要1个行来控制,所以ans ...
- hdu 2295 dlx重复覆盖+二分答案
题目大意: 有一堆雷达工作站,安放至多k个人在这些工作站中,找到一个最小的雷达监控半径可以使k个工作人所在的雷达工作站覆盖所有城市 二分半径的答案,每次利用dlx的重复覆盖来判断这个答案是否正确 #i ...
- HDU 2295 Radar dancing links 重复覆盖
就是dancing links 求最小支配集,重复覆盖 精确覆盖时:每次缓存数据的时候,既删除行又删除列(这里的删除列,只是删除表头) 重复覆盖的时候:只删除列,因为可以重复覆盖 然后重复覆盖有一个估 ...
- HDU 5046 Airport【DLX重复覆盖】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意: 给定n个城市的坐标,要在城市中建k个飞机场,使城市距离最近的飞机场的最长距离最小,求这 ...
- (中等) HDU 3335 , DLX+重复覆盖。
Description As we know,the fzu AekdyCoin is famous of math,especially in the field of number theory. ...
随机推荐
- leetcode72. Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- ADO数据库链接
一.数据库操作准备 // --------------------------------------------------------------------------------------- ...
- arm 及ndk编译
首页 » Android android的armeabi跟armeabi-v7a 网友分享于:2014-03-16 浏览:867次 android的armeabi和armeabi-v7 ...
- poj 3259 Wormholes【spfa判断负环】
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36729 Accepted: 13444 Descr ...
- HDU 3078 Network LCA
题意:n个点 m个询问,下面一行是n 个点的权值 再下面n-1行是双向的边 然后m个询问:k u v 若k==0,则把u点的权值改为v,否则回答u->v之间最短路经过点的权值中 第k大的值是多 ...
- UML 的基本组成
UML 是由UML构造块.规则.通用机制三部分组成的.而UML构造块由建模元素(事物).关系和图组成. 建模元素 建模元素是对模型中最具有代表性的成分的抽象.一般情况下,将建模元素分为结构元素.行为元 ...
- 【BZOJ1833】【ZJOI2010】数字计数 数位DP
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- C#系列之值类型和引用类型
前言 这几天一直在思考这章讨论什么, 在上一章讨论string的时候牵涉到引用类型,那么我们这一章讨论讨论一下,值类型和引用类型. 值类型和引用类型,它们的区别来源于传值方式.有人会认为值类型就存在栈 ...
- 基于xmpp openfire smack开发之openfire介绍和部署[1]
前言 http://blog.csdn.net/shimiso/article/details/8816558 Java领域的即时通信的解决方案可以考虑openfire+spark+smack.当然也 ...
- [RxJS] Combination operator: zip
CombineLatest and withLatestFrom are both AND-style combination operators. In this lesson, we will l ...