Use the QR decomposition to prove Hadamard's inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Linux+svn无法显示日志

    自己在linux中配置了一个svn服务器,但是客户端在浏览日志的时候报错.提示不能连接到服务器,是否离线查看... 谷歌了一下,是因为svnserve.conf中配置了anon-access = re ...

  2. [可拖动DIV]刚开通博客顺便就写了点东西!

    说说我自己的思路 首先需要一个初始div div { border: 1px #333 solid; width: 200px; height: 50px; } <div id="od ...

  3. js实现浏览器兼容复制功能

    经常看到这样一种效果:就是单击一个按钮,就将某个区域内的内容,复制到了剪切板中.其实这个功能实现起来也不难,核心就是用到了window子对象clipboardData的一个方法:setData()语法 ...

  4. AVAudioRecorder 录制音频

    AVFoundation 中使用AVAudioRecorder 类添加音频录制功能是非常简单的, AVAudioRecorder构建与Audio Queue Services之上是一个功能强大且代码简 ...

  5. PHP初学留神(五)·小结

    来学习快两个月了,这周末即将回家开始写论文.那么走之前,好好总结一下这两个月的所学所得吧.这段时间,在实验室里做的Web开发主要涉及到了web开发的一些框架内容以及php基础知识.思维导图记录如下. ...

  6. ubuntu漂亮主题

    桌面看腻了?试试这 4 款漂亮的 Linux 图标主题吧 http://linux.cn/article-4332-1.html Flatabulous https://github.com/anmo ...

  7. 企业生产环境下不同业务的linux分区建议

    常规分区方案: /boot:  100M swap:内存的1至1.5倍 / : 剩余硬盘大小 DB及存储:有大量重要的数据 /boot : 100M swap: 内存的1至1.5倍,如果内存大于等于1 ...

  8. 【小知识】DataTable 转 List -----------点滴之水,汇涓涓细流,成汪洋大海

    在大部分时候我们从ADO中得到的数据都是DataTable.DataSet数据源,然而有强迫症的同学老是喜欢折腾,硬是要把它转换为实体集合,说是DataTable效率差云云,于是乎收到了同化. 必要信 ...

  9. codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre

    C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...

  10. PL/SQL — 存储过程

    存储过程子程序的一种类型,能够完成一些任务,作为schema对象存储于数据库.是一个有名字的PL/SQL代码块,支持接收或不接受参数,同时也支持参数输出.一个存储过程通常包含定于部分,执行部分,Exc ...