Use the QR decomposition to prove Hadamard's inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 遍历 DataSet

    DataSet ds=new DataSet ; //获取dataset的第一张table,取其他table只须改下标 DataTable dt=ds.tables[]; //遍历行 foreach( ...

  2. windows 使用excel导出的问题

    解决 window server2008  r2 没有注册Ofiice组件的方法   .NET下在用Microsoft.Office.Interop.Excel及word 操作Excel和Word时, ...

  3. 盗链网易163、腾讯QQ、新浪sina、百度Baidu的图片之PHP独立版

    网易相册频道,网易相册确实是一个高质量图片的地方,而且免费,唯一缺点是很多加了水印,但这个不重要了,无意间发现网易163相册频道的图片是防止盗链的,于是便自己写了一个小程序来突破这个. 本盗链图片最新 ...

  4. 《Junit实战》读书笔记

    核心原则:任何没有经过自动测试的程序功能都可以当做不存在 单元测试框架的大三规则: 1.每个单元测试都必须独立于其他所有单元测试而运行 2.框架应该以单个测试为单元来检测和报告错误 3.应该易于定义要 ...

  5. Python设计模式——模版方法模式

    1.模版方法模式 做题的列子: 需求:有两个学生,要回答问题,写出自己的答案 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' class Stude ...

  6. CSS3学习之 transform 属性

    CSS3 transform是什么? transform的含义是:改变,使…变形:转换 CSS3 transform都有哪些常用属性? transform的属性包括:rotate() / skew() ...

  7. Discuz CDN优化方案

    DZ整体来说CDN是有点蛋疼的,因为毕竟琐碎,貌似大部分帖子都没有说全,这里罗列一下,给在用的孩儿们一点参考: 1.在后台设置CSS/JS走CDN路径,具体[全局]-[性能优化]-[服务器优化] 2. ...

  8. [转载]MongoDB C# 驱动教程

    本教程基于C#驱动 v1.6.x . Api 文档见此处: http://api.mongodb.org/csharp/current/. 简介 本教程介绍由10gen支持的,用于MongoDB的C# ...

  9. csuoj 1351: Tree Counting

    这是一个动态规划的题: 当初想到要用dp,但是一直想不到状态转移的方程: 题解上的原话: 动态规划,设 g[i]表示总结点数为 i 的方案种数,另设 f[i][j]表示各个孩子的总结点数为i,孩子的个 ...

  10. jquery dom ready, jqery2.1.1实现-源码分析

    本文链接http://www.cnblogs.com/Bond/p/4178311.html jquery document  ready的实现其很很简,虽说简单,其很很多人还是没去关注过它的实现.我 ...