Use the QR decomposition to prove Hadamard's inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 实习笔记-2:sql 分组不一定要group by

    今天在公司写代码的时候,遇到一个sql语句构建问题. 情形是这样的: 我需要获取不同小组下前N条记录. select top 10 * from dbo.Topic where GroupID in ...

  2. Windows Phone 动态改变ListBox样式

    使用ListBox时通常会借助ItemTemplate帮助我们实现更复杂多样的样式显示,体现了Xaml的灵活.如何动态改变变ListBox的样式,实现类似电脑资源管理器中列表显示和图标显示形式的替换. ...

  3. USB初始化

    //USB初始化void CFileManagerDlg::usbinit(){ #define BUFFER_SIZE 64 struct usb_bus *bus; struct usb_devi ...

  4. Putty终端 模拟 远程登录 虚拟机Linux

    1.虚拟机设置 虚拟机设置->网络适配器->选择Host-only:与主机共享一个私有网络 桥接.NAT.Host-only三种网络模式的说明: (1)桥接:表示在局域网内是一台真实的系统 ...

  5. 使用Python编程语言连接MySQL数据库代码

    使用Python编程语言连接MySQL数据库代码,跟大家分享一下: 前几天我用python操作了mysql的数据库,发现非常的有趣,而且python操作mysql的方法非常的简单和快速,所以我把代码分 ...

  6. 说说对C语言指针的理解

    指针困扰了一些学习编程的人,或许你的老师会告诉你,指针比较难理解. 我当时被老师的话唬住所以学习指针那章的时候都没心情听课.(说得像讲别的内容时我听了似的,开玩笑) 导致了学习链表的时候各种卧槽. * ...

  7. 【软件分享】文本对比工具 Beyond Compare

    转载自公众号:EmbeddDeveloper 对嵌入式感兴趣可以关注原作者博客: http://blog.csdn.net/ybhuangfugui 此处转载为分享用 Ⅰ.摘要 Beyond Comp ...

  8. android 界面布局 很好的一篇总结[转]

    1.LinearLayout ( 线性布局 ) :(里面只可以有一个控件,并且不能设计这个控件的位置,控件会放到左上角) 线性布局分为水平线性和垂直线性二者的属性分别为:android:orienta ...

  9. Automotive Security的一些资料和心得(6):AUTOSAR

    1.1 Introduction AUTOSAR(汽车开放系统架构)是一个开放的,标准化的汽车软件架构,由汽车制造商,供应商和开发工具共同开发.它联合了汽车OEM ,供应商和开发工具供应商,其目标是创 ...

  10. java.io.IOException: Cannot run program "bash": error=12, Cannot allocate memory

    java.io.IOException: Cannot run program , Cannot allocate memory 云服务器运行nutch报出的异常: 解决方案: http://daim ...