B+树与B*树小结

一、B+树

1.B+树定义与特性

B+树是B-树的变体,也是一种多路搜索树:

其定义基本与B-树同,除了:

1).非叶子结点的子树指针与关键字个数相同;

2).非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

3).为所有叶子结点增加一个链指针;

4).所有关键字都在叶子结点出现

为了全面 这里给出网上另外一种说法:

一棵m阶的B+树和m阶的B树的差异在于:

1.有n棵子树的结点中含有n个关键字; (而B 树是n棵子树有n-1个关键字)

2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (而B 树的叶子节点并没有包括全部需要查找的信息)

3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B 树的非终节点也包含需要查找的有效信息)

下图给出典型的3阶B+树示例

B+的特性:

1).所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2).不可能在非叶子结点命中;

3).非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4).更适合文件索引系统;

2.B+树的基本操作

1)查找操作

对B+树可以进行两种查找运算:

  a.从最小关键字起顺序查找;

  b.从根结点开始,进行随机查找。

  在查找时,若非终端结点上的剧组机等于给定值,并不终止,而是继续向下直到叶子结点。因此,在B+树中,不管查找成功与否,每次查找都是走了一条从根到叶子结点的路径。其余同B-树的查找类似。

2).插入操作

B+树的插入与B树的插入过程类似。不同的是B+树在叶结点上进行,如果叶结点中的关键码个数超过m,就必须分裂成关键码数目大致相同的两个结点,并保证上层结点中有这两个结点的最大关键码。(算法见百度百科)

3)删除操作

B+树的删除也仅在叶子结点进行,当叶子结点中的最大关键字被删除时,其在非终端结点中的值可以作为一个“分界关键字”存在。若因删除而使结点中关键字的个数少于m/2 (m/2结果取上界,如5/2结果为3)时,其和兄弟结点的合并过程亦和B-树类似。

PS:

a.不同于B+树只适合随机检索,B+树同时支持随机检索和顺序检索,在实际中应用比较多.

b.为什么说B+树比B 树更适合实际应用中操作系统的文件索引和数据库索引?

1) B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+树内部结点只需要1个盘快(全部关键字都在叶结点的缘故?)。当需要把内部结点读入内存中的时候,B-树就比B+树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)(B+树的内结点只有索引的作用,何来“把内部结点读入内存”...,对于B+树找到叶结点就可以,另外B+树可以顺序查找)。

2) B+树的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

c.B+树和B-树最大的不同点是:

1).B-树的关键字和记录是放在一起的,叶子节点可以看作外部节点,不包含任何信息;B+树的非叶子节点中只有关键字和指向下一个节点的索引,记录只放在叶子节点中。

2).在B-树中,越靠近根节点的记录查找时间越快,只要找到关键字即可确定记录的存在;而B+树中每个记录的查找时间基本是一样的,都需要从根节点走到叶子节点,而且在叶子节点中还要再比较关键字。从这个角度看B-树的性能好像要比B+树好,而在实际应用中却是B+树的性能要好些。因为B+树的非叶子节点不存放实际的数据,这样每个节点可容纳的元素个数比B-树多,树高比B-树小,这样带来的好处是减少磁盘访问次数。尽管B+树找到一个记录所需的比较次数要比B-树多,但是一次磁盘访问的时间相当于成百上千次内存比较的时间,因此实际中B+树的性能可能还会好些,而且B+树的叶子节点使用指针连接在一起,方便顺序遍历(例如查看一个目录下的所有文件,一个表中的所有记录等),这也是很多数据库和文件系统使用B+树的缘故。

二、B*树(这个网上介绍的甚少,教科书我也没有找到细致的介绍)

B*Tree是B+树的变体,在B+Tree的非根和非叶子结点(内结点)再增加指向兄弟的指针

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高。

转自 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/25/2608880.html

b+树 b-树的区别的更多相关文章

  1. 平衡二叉树,B树,B+树的概念及区别

    1.平衡二叉树   由来:平衡二叉树是基于二分法的策略提高数据的查找速度的二叉树的数据结构 特点: 1.二叉树:意思是每个节点最多只能有两个子节点 2.平衡:因为平衡二叉树的查询性能与树的高度成正比, ...

  2. 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组

    涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...

  3. 【Todo】字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树

    另开一文分析字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树. 先来一个汇总, 算法: 本文中提到的字符串匹配算法有:KMP, BM, Horspool, Sunday, BF, ...

  4. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  5. B-树 B+树 B*树

    区分B树,B-树 有的文章说二叉查找树(Binary Search Tree,BST)就是B树,这个我总结来说是不对的 B树和B-树是同一种树,只不过英语中B-tree被中国人翻译成了B-树,让人以为 ...

  6. B树 B+树 红黑树

    B-Tree(B树) 具体讲解之前,有一点,再次强调下:B-树,即为B树.因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解. ...

  7. 初学树套树:线段树套Treap

    前言 树套树是一个十分神奇的算法,种类也有很多:像什么树状数组套主席树.树状数组套值域线段树.\(zkw\)线段树套\(vector\)等等. 不过,像我这么弱,当然只会最经典的 线段树套\(Trea ...

  8. 【BZOJ1901】Dynamic Rankings(树套树,树状数组,主席树)

    题意:给定一个N个数的序列,要求维护一个数据结构支持以下两种操作: 1:将第X个数改成Y 2:查询第X到第Y个数里第K小的数是多少 n,m<=10000,a[i]<=10^9 思路:单点修 ...

  9. HTTP协议漫谈 C#实现图(Graph) C#实现二叉查找树 浅谈进程同步和互斥的概念 C#实现平衡多路查找树(B树)

    HTTP协议漫谈   简介 园子里已经有不少介绍HTTP的的好文章.对HTTP的一些细节介绍的比较好,所以本篇文章不会对HTTP的细节进行深究,而是从够高和更结构化的角度将HTTP协议的元素进行分类讲 ...

  10. 平衡树B树B+树红黑树

    二叉树与二叉查找树的操作是必须要熟练掌握的,接下来说的这些树实现起来很困难,所以我们重点去了解他们的特点. 一.平衡二叉查找树与红黑树 平衡树AVL:追求绝对的高度平衡,它具有稳定的logn的高度,因 ...

随机推荐

  1. JQuery EasyUI内Combobox的onChange事件

    1.原始方法 我想写个html代码的都对下拉选择标签select不陌生,关于这个标签,在不加任何渲染的情况下,想要触发其onchange事件是很简单的一件事情,如下: <select id=&q ...

  2. 树莓派(Rospberry Pi B+)到货亲測

    1 图鉴 Rospberry Pi  B+最终在今天下午有蜗牛快递公司圆*送到了.B+主要是添加了2个USB,添加了GPIO,sd卡换成了micro sd ...先不说直接上图再说,期待了好久好久 w ...

  3. Android软键盘调用及隐藏,以及获得点击软键盘输入的字母信息

    在Android提供的EditText中单击的时候,会自动的弹出软键盘,其实对于软键盘的控制我们可以通过InputMethodManager这个类来实现.我们需要控制软键盘的方式就是两种一个是像Edi ...

  4. MySQL::SQL_MODE

    SQL_MODE可能是比较容易让开发人员和DBA忽略的一个变量,默认为空.SQL_MODE的设置其实是比较冒险的一种设置,因为在这种设置下可以允许一些非法操作,比如可以将NULL插入NOT NULL的 ...

  5. C# - 系统类 - Object类

    Object类 ns:System 此类是所有.NET Framework中的类的基类 Type类就派生自Object类 C#提供了object关键字来表示一个类实例的类型 而无需使用Object作为 ...

  6. radio组件

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  7. JVM笔记6:JVM类加载机制

    虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析.初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制 从类被加载到虚拟机内存中开始,到卸载出内存为止 ...

  8. html代码实现自动滚动,鼠标滑过时停止滚动

    <marquee style="width: 1200px;height:200px;margin:0px auto" onmouseout="this.start ...

  9. SignalR: The new old thing

    As you can see, this is my first blog posted in cnblog. If you find any mistake, don’t hesitate to t ...

  10. JS操作CSS样式

    一.样式表(css) 使用样式表可以更好的显示WEB文档,也可以结合javascript从而实现很好的控制样式表. 样式(css)与内容(html): HTML是处理文档结构的,HTML可以实现如何把 ...