Description

在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。

Input

第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。

Output

最大的多边形面积,答案精确到小数点后3位。

Sample Input

5

0 0

1 0

1 1

0 1

0.5 0.5

Sample Output

1.000

HINT

数据范围 n<=2000, |x|,|y|<=100000

旋转卡壳的一道裸题。首先确定一点,面积最大的四个点肯定是在凸包上的。因此,我们可以枚举凸包上的两个点(对角线),另外两个通过与对角线距离单峰性直接维护。(这就叫做旋转卡壳。。。)

实在听不懂的话看代码,我把计算几何写成了解析几何了。。。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std; #define esp (1e-6)
#define maxn 2010
int n,m; double ans; inline double qua(double a) { return a*a; } struct NODE
{
double x,y;
friend inline bool operator < (NODE a,NODE b) { if (a.x == b.x) return a.y < b.y; return a.x < b.x; }
friend inline NODE operator - (NODE a,NODE b) { return (NODE) {a.x - b.x,a.y - b.y}; }
friend inline double operator / (NODE a,NODE b) { return a.x*b.y-a.y*b.x; }
inline double len() { return sqrt(qua(x)+qua(y)); }
inline void read() { scanf("%lf %lf",&x,&y); }
}pp[maxn],ch[maxn*2];
struct LINE
{
double a,b,c;
inline double dis(NODE p) { return fabs(a*p.x+b*p.y+c)/sqrt(qua(a)+qua(b)); }
};
struct SEG
{
NODE a,b;
inline LINE extend() { return (LINE) {a.y-b.y,b.x-a.x,b.y*(a.x-b.x)-b.x*(a.y-b.y)}; }
}; inline void convex()
{
sort(pp + 1,pp + n + 1);
for (int i = 1;i <= n;++i)
{
while (m > 1&&(ch[m]-ch[m-1])/(pp[i]-ch[m-1]) <= 0) --m;
ch[++m] = pp[i];
}
int k = m;
for (int i = n - 1;i;--i)
{
while (m > k&&(ch[m]-ch[m-1])/(pp[i] - ch[m - 1]) <= 0) --m;
ch[++m] = pp[i];
}
if (n > 1) m--;
} inline void jam()
{
for (int i = 1;i <= m;++i) ch[i+m] = ch[i];
int p1,p2,p3,p4; LINE l;
for (p1 = 1;p1 <= m;++p1)
{
p2 = p1 + 1;
p3 = p2 + 1;
p4 = p3 + 1;
for (;p3 < p1 + m - 1;++p3)
{
l = ((SEG) { ch[p1],ch[p3] }).extend();
while (p2 < p3 && l.dis(ch[p2]) < l.dis(ch[p2 + 1])) ++p2;
while (p4 < p1 + m && l.dis(ch[p4]) < l.dis(ch[p4 + 1])) ++p4;
ans = max(ans,(l.dis(ch[p2])+l.dis(ch[p4]))*(ch[p1] - ch[p3]).len()/2);
}
}
} int main()
{
freopen("1069.in","r",stdin);
freopen("1069.out","w",stdout);
scanf("%d",&n);
for (int i = 1;i <= n;++i) pp[i].read();
convex();
jam();
printf("%.3lf",ans);
fclose(stdin); fclose(stdout);
return 0;
}

BZOJ 1069 最大土地面积的更多相关文章

  1. [BZOJ]1069 最大土地面积(SCOI2007)

    计算几何经典题,贴板子. Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接 ...

  2. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  3. BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2978  Solved: 1173[Submit][Sta ...

  4. BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)

    题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...

  5. BZOJ 1069 Luogu P4166 最大土地面积 (凸包)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=1069 (luogu)https://www.luogu.org/probl ...

  6. ●BZOJ 1069 [SCOI2007]最大土地面积

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...

  7. bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...

  8. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  9. [BZOJ]1069: [SCOI2007]最大土地面积

    题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...

随机推荐

  1. Android UI学习 - GridView和ImageView的使用

    GridView: A view that shows items in two-dimensional scrolling grid. The items in the grid come from ...

  2. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(39)-在线人数统计探讨

    原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(39)-在线人数统计探讨 系列目录 基于web的网站在线统计一直处于不是很精准的状态!基本上没有一种方法可 ...

  3. 翻译Android USB HOST API

    翻译Android USB HOST API 源代码地址:http://developer.android.com/guide/topics/connectivity/usb/host.html 译者 ...

  4. [TypeScript] Understanding Generics with RxJS

    Libraries such as RxJS use generics heavily in their definition files to describe how types flow thr ...

  5. [转] 使用git自动部署简单网站

    要做什么 假设你有一个博客,有一台网站服务器(或者很多台作负载均衡的服务器),当你的博客要升级时,你可能要在你自己的电脑上写好代码(可能包括本地调试好),然后提交到git(或svn),然后在每个服务器 ...

  6. 编程基础-msdn编程指南笔记

    此博仅为笔记,摘自msdn编程指南文档,链接地址:http://msdn.microsoft.com/zh-cn/library/67ef8sbd.aspx 注释:// 单行注释 /* 多行注释*/ ...

  7. js正则实现用户输入银行卡号的控制及格式化

    //js正则实现用户输入银行卡号的控制及格式化 <script language="javascript" type="text/javascript"& ...

  8. Index Full Scan vs Index Fast Full Scan-1103

    [Oracle] Index Full Scan vs Index Fast Full Scan作者:汪海 (Wanghai) 日期:14-Aug-2005 出处:http://spaces.msn. ...

  9. Deep Learning学习随记(二)Vectorized、PCA和Whitening

    接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化 ...

  10. iOS远程消息推送

    iOS 推送基础知识 Apple 使用公共密钥数字证书对来自 iOS 应用程序的推送请求进行身份验证,所以您首先需要创建身份验证密钥,并向 Apple 注册它们.我将在下一节中花相当长的篇幅来直接介绍 ...