Description

在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。

Input

第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。

Output

最大的多边形面积,答案精确到小数点后3位。

Sample Input

5

0 0

1 0

1 1

0 1

0.5 0.5

Sample Output

1.000

HINT

数据范围 n<=2000, |x|,|y|<=100000

旋转卡壳的一道裸题。首先确定一点,面积最大的四个点肯定是在凸包上的。因此,我们可以枚举凸包上的两个点(对角线),另外两个通过与对角线距离单峰性直接维护。(这就叫做旋转卡壳。。。)

实在听不懂的话看代码,我把计算几何写成了解析几何了。。。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std; #define esp (1e-6)
#define maxn 2010
int n,m; double ans; inline double qua(double a) { return a*a; } struct NODE
{
double x,y;
friend inline bool operator < (NODE a,NODE b) { if (a.x == b.x) return a.y < b.y; return a.x < b.x; }
friend inline NODE operator - (NODE a,NODE b) { return (NODE) {a.x - b.x,a.y - b.y}; }
friend inline double operator / (NODE a,NODE b) { return a.x*b.y-a.y*b.x; }
inline double len() { return sqrt(qua(x)+qua(y)); }
inline void read() { scanf("%lf %lf",&x,&y); }
}pp[maxn],ch[maxn*2];
struct LINE
{
double a,b,c;
inline double dis(NODE p) { return fabs(a*p.x+b*p.y+c)/sqrt(qua(a)+qua(b)); }
};
struct SEG
{
NODE a,b;
inline LINE extend() { return (LINE) {a.y-b.y,b.x-a.x,b.y*(a.x-b.x)-b.x*(a.y-b.y)}; }
}; inline void convex()
{
sort(pp + 1,pp + n + 1);
for (int i = 1;i <= n;++i)
{
while (m > 1&&(ch[m]-ch[m-1])/(pp[i]-ch[m-1]) <= 0) --m;
ch[++m] = pp[i];
}
int k = m;
for (int i = n - 1;i;--i)
{
while (m > k&&(ch[m]-ch[m-1])/(pp[i] - ch[m - 1]) <= 0) --m;
ch[++m] = pp[i];
}
if (n > 1) m--;
} inline void jam()
{
for (int i = 1;i <= m;++i) ch[i+m] = ch[i];
int p1,p2,p3,p4; LINE l;
for (p1 = 1;p1 <= m;++p1)
{
p2 = p1 + 1;
p3 = p2 + 1;
p4 = p3 + 1;
for (;p3 < p1 + m - 1;++p3)
{
l = ((SEG) { ch[p1],ch[p3] }).extend();
while (p2 < p3 && l.dis(ch[p2]) < l.dis(ch[p2 + 1])) ++p2;
while (p4 < p1 + m && l.dis(ch[p4]) < l.dis(ch[p4 + 1])) ++p4;
ans = max(ans,(l.dis(ch[p2])+l.dis(ch[p4]))*(ch[p1] - ch[p3]).len()/2);
}
}
} int main()
{
freopen("1069.in","r",stdin);
freopen("1069.out","w",stdout);
scanf("%d",&n);
for (int i = 1;i <= n;++i) pp[i].read();
convex();
jam();
printf("%.3lf",ans);
fclose(stdin); fclose(stdout);
return 0;
}

BZOJ 1069 最大土地面积的更多相关文章

  1. [BZOJ]1069 最大土地面积(SCOI2007)

    计算几何经典题,贴板子. Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接 ...

  2. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  3. BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2978  Solved: 1173[Submit][Sta ...

  4. BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)

    题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...

  5. BZOJ 1069 Luogu P4166 最大土地面积 (凸包)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=1069 (luogu)https://www.luogu.org/probl ...

  6. ●BZOJ 1069 [SCOI2007]最大土地面积

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...

  7. bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...

  8. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  9. [BZOJ]1069: [SCOI2007]最大土地面积

    题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...

随机推荐

  1. 简单的访客IP获取类-IPHelper.cs

    public class IPHelper { public static string GetVisitorsIPAddress() { string result = String.Empty; ...

  2. windows下安装pip

    1.在安装pip前,请确认win系统中已经安装好了python,和easy_install工具,如果系统安装成功,easy_install在目录C:\Python27\Scripts 下面,确认截图如 ...

  3. Java学习笔记六(I/O流)

    1.介绍 在实际开发过程中经常会用到数据的输入/输出操作,本篇博客着重分析一下,java中经经常使用到的有关IO操作的类.而在java中能够将经常使用的流分为两个部分:字节流和字符流. 1.流的抽象基 ...

  4. 怎样在delphi中实现控件的拖拽

    下面这2种方法都能实现对控件和窗体的拖拽 方法1 procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton; Shift ...

  5. 亲测安装php

    亲测安装php1.tar zvxf php-5.3.8.tar.gz 2.cd php-5.3.83../configure \ --prefix=/usr/local/php \--with-mys ...

  6. order by 自定义排序

    使用order by排序,有时候不是根据字符或数字顺序,而是根据实际要求排序. 例如有客户A,B,C,我希望排序结果是B,C,A,那么就要通过自定义的规则排序. 第一种方法,可以构造一张映射表,将客户 ...

  7. CSS定位:相对定位、绝对定位和固定定位(relative absolute fixed)

    相对定位:position:relative; 不脱离文档流,参考自身静态位置通过top,bottom,left,right定位,并且可通过z-index进行层次分级. 绝对定位:position:a ...

  8. 2016年11月2日——jQuery源码学习笔记

    1.jQuery()函数,即$().有四种不同的调用方式. (1)传递CSS选择器(字符串)给$()方法,返回当前文档中匹配该选择器的元素集.可选第二个参数,一个元素或jQuery对象,定义元素查询的 ...

  9. Log4j(1.2.17) - hello world

    1. Maven 依赖 <dependencies> <dependency> <groupId>log4j</groupId> <artifac ...

  10. 浅谈Android系统的图标设计规范

    http://homepage.yesky.com/89/11620089.shtml 目前移动平台的竞争日益激烈,友好的用户界面可以帮助提高用户体验满意度,图标Icon是用户界面中一个重要的组成部分 ...