#include<iostream>
using namespace std; //BFS+优先队列(打印路径) #define N 500005
int c[N];
int dp[N]; //dp[i]保存的是长度为i的最长不降子序列的最小尾元素 int BS(int n,int x) //二分查找下标,当x比全部元素小时下标为1,比全部元素大时下标为n+1.
{
int low,high,mid; low=1,high=n;
while(low<=high)
{
mid=(low+high)>>1;
if(dp[mid]==x) return mid;
else if(dp[mid]>x) high=mid-1;
else if(dp[mid]<x) low=mid+1;
}
return low;
} int main()
{
int t,n,a,b,i,len,pos; t=0;
while(scanf("%d",&n)==1)
{
for(i=1;i<=n;i++)
c[scanf("%d%d",&a,&b),a]=b; //括号先算
dp[0]=-1;
dp[1]=c[1];
len=1;
for(i=1;i<=n;i++)
{
pos=BS(len,c[i]);
dp[pos]=c[i];
if(pos>len) len++;
}
printf("Case %d:\n",++t);
if(len==1)
printf("My king, at most %d road can be built.\n\n",len);
else
printf("My king, at most %d roads can be built.\n\n",len);
}
return 0;
}

參考自:http://blog.csdn.net/ice_crazy/article/details/7536332

如果存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7。能够看出来它的LIS长度为5。

以下一步一步试着找出它。

我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。

此外,我们用一个变量Len来记录如今最长算到多少了

首先,把d[1]有序地放到B里。令B[1] = 2,就是说当仅仅有1一个数字2的时候,长度为1的LIS的最小末尾是2。

这时Len=1

然后,把d[2]有序地放到B里。令B[1] = 1,就是说长度为1的LIS的最小末尾是1。d[1]=2已经没用了。非常easy理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,非常easy理解吧。

这时候B[1..2]
= 1, 5,Len=2

再来。d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,由于1小于3。长度为1的LIS最小末尾应该是1。这样非常easy推知。长度为2的LIS最小末尾是3。于是能够把5淘汰掉,这时候B[1..2]
= 1, 3,Len = 2

继续,d[5] = 6。它在3后面,由于B[2] = 3, 而6在3后面。于是非常easy能够推知B[3] = 6, 这时B[1..3]
= 1, 3, 6,还是非常easy理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就能够把6替换掉。得到B[3] = 4。B[1..3] = 1,
3, 4。 Len继续等于3

第7个, d[7] = 8,它非常大,比4大,嗯。

于是B[4] = 8。Len变成4了

第8个, d[8] = 9。得到B[5] = 9。嗯。Len继续增大。到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5]
= 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它仅仅是存储的相应长度LIS的最小末尾。有了这个末尾。我们就能够一个一个地插入数据。尽管最后一个d[9]
= 7更新进去对于这组数据没有什么意义,可是假设后面再出现两个数字 8 和 9,那么就能够把8更新到d[5], 9更新到d[6]。得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的。并且是进行替换而不须要挪动——也就是说,我们能够使用二分查找,将每个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就减少到了O(NlogN)~

HDU ACM 1025 Constructing Roads In JGShining&#39;s Kingdom-&gt;二分求解LIS+O(NlogN)的更多相关文章

  1. HDU 1025 Constructing Roads In JGShining&#39;s Kingdom (DP)

    Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which ...

  2. hdu1025 Constructing Roads In JGShining&#39;s Kingdom(二分+dp)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 Problem ...

  3. hdu1025 Constructing Roads In JGShining&#39;s Kingdom (nlogn的LIS)

    题目链接 第一次写nlogn复杂度的LIS,纪念一下. 题目意思是说.有两条平行线.两条平行线都有n个城市,都是从左到右标记为1--n,一条线上是富有城市,一个是贫穷城市.输入n.接下来有n行,p,r ...

  4. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...

  5. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  6. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  7. hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  8. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

随机推荐

  1. 【算法】快速排序-Java版

    说在前面的话 平常码砖的时候,对于一个数组进行排序更多的是起泡排序,起泡排序对于一般不是很长的数组进行操作没什么问题,一旦数组过大,很明显效率低. 而快排是对起泡排序的一种改进,效率明显优高. 快排思 ...

  2. Android Handler、Lopper消息驱动机制

    Android应用程序是通过消息来驱动的,系统为每一个应用程序维护一个消息队例(MesageQueue),应用程序的主线程不断地从这个消息队例中获取消息(Mesage),然后对这些消息进行处理(Han ...

  3. c++中的vector原理

    vectorvector就是动态数组.它也是在堆中分配内存,元素连续存放,有保留内存,如果减少大小后,内存也不会释放.如果新值>当前大小时才会再分配内存. 它拥有一段连续的内存空间,并且起始地址 ...

  4. iOS中的隐式动画

    隐式动画就是指  在 非 人为在代码中 定义动画  而系统却默认  自带   的动画  叫做隐式动画. 比如  改变 图层  的颜色  位置  和   透明度  的时候    都会  产生附带的渐变的 ...

  5. caffe---测试模型分类结果并输出(python )

    当训练好一个model之后,我们通常会根据这个model最终的loss和在验证集上的accuracy来判断它的好坏.但是,对于分类问题,我们如果只是知道整体的分类正确率 显然还不够,所以只有知道模型对 ...

  6. 使用SeaJS实现模块化JavaScript开发

    前言 SeaJS是一个遵循CommonJS规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.与jQuery等JavaScript框架不同,SeaJS不会扩展封 ...

  7. JSch - Java实现的SFTP(文件上传详解篇)(转)

    JSch是Java Secure Channel的缩写.JSch是一个SSH2的纯Java实现.它允许你连接到一个SSH服务器,并且可以使用端口转发,X11转发,文件传输等,当然你也可以集成它的功能到 ...

  8. 【HDOJ】3696 Farm Game

    SPFA求最短路径.见图的时候注意逆向建图. /* 3696 */ #include <iostream> #include <queue> #include <vect ...

  9. Linq打印

    Method syntax: Enumerable.Range(1, 100).ToList().ForEach(Console.WriteLine); Query syntax: (from n i ...

  10. nginx+tomcat配置https

    nginx代理https后,应用redirect https变成http,很多页面报404.情况类似http://blog.sina.com.cn/s/blog_56d8ea900101hlhv.ht ...