《University Calculus》-chaper13-多重积分-二重积分的引入
这一章节我们开始对多重积分的研究。
在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f(x),对f(x)求解一次定积分即可。其方法就是先微分(将自变量区间划分为n个区间段),引入极限的概念(即使得n趋向无穷)之后使得我们能够“化曲为直”,然后利用矩形的面积公式进行求解。随后是积分过程,将这n个小矩形相加求极限,可得曲边梯形的面积。
如下几图使得这个过程更加的直观.


Sp又叫做,f(x)在[a,b]上的黎曼和。
关于黎曼和,这里简单的插一句,关于积分的定义在牛顿时代就已经给出了,但是它现代数学的的定义是后来黎曼给出的。关于黎曼和,存在着很多形式。
由于积分和微分是逆运算,由此根据导数的定义可给出积分符号∫。
那么我们把一开始求曲边梯形的面积推广到空间,对于一个长方体将其一个面换成曲面(曲顶柱体),我们如何求解其体积呢?
像这个图一样。(其顶部是一个曲面,底面在x-O-y面上)(之所以有这个限制,是因为二重积分自身方法的限制,对于更一般的情况,在三重积分中会提到。)

类比处理曲边梯形面积的思想,这里我们建立三维坐标系,用二元函数z = f(x,y)来表征最上面的曲面,我们从它的底面分析,考虑“化曲为直”将其往长方体上靠拢。
我们将底面的矩形用一些平行于x、y的直线,将其划分成n个小矩形,并标号。记第i个矩形的长为△xi,宽为△yi,第i个小矩形的面积是△Ai=△xi△yi。

容易看到,我们可以近似的将不规则几何体看成由n个长方体组成,那么会得到如下的黎曼和的形式:

而很容易看到,随着n趋于无穷,约等式右边的和式将无限的接近V。
如下图所示。

因此我们得到:

可以看到,这里我们有两个维度的微小圆,因此我们要在两个维度上进行积分,因此我们采用如下的表述方式:

《University Calculus》-chaper13-多重积分-二重积分的引入的更多相关文章
- 《University Calculus》-chaper13-多重积分-三重积分的引入
承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...
- 《University Calculus》-chape5-积分法-积分的定义
这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...
- 《University Calculus》-chaper13-多重积分-二重积分的计算
之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在<概率论基础教程>中一系列的推导中发挥着很重要的作用. 回想先前关于二重积分的几 ...
- 《University Calculus》-chape12-偏导数-基本概念
偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...
- 《University Calculus》-chaper13-向量场中的积分-线积分
线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...
- 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式
写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...
- 《University Calculus》-chape5-积分法-微积分基本定理
定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...
- 《University Calculus》-chape10-向量和空间几何学-叉积
叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...
- 《University Calculus》-chaper8-无穷序列和无穷级数-p级数
Q:定义p级数有如下形式,讨论p级数的敛散性.(p>o) 我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的.那么下面我们进行分情况讨论. 在这之前,我们有必要先引入一个检验敛散性 ...
随机推荐
- Android开发中用友盟做分享的一些坑
仅限于用5.1.4版本的 按照友盟分享的API在自己的代码中修改: 1.微信分享需要打包APK文件,数字签名与微信开发申请的要一致 2.此name中属性不能修改 value为友盟的申请的appkey ...
- (转)asp.net分页存储过程
Asp.Net分页存储过程 SQL分页语句 一.比较万能的分页: sql代码: 1 2 3 select top 每页显示的记录数 * from topic where id not in (sel ...
- ajax xmlhttp下open方法POST、GET参数的区别
1. get是从服务器上获取数据(会暴露客户端ip),post是向服务器传送数据.2. get是把参数数据队列加到提交表单的ACTION属性所指的URL中,值和表单内各个字段一一对应,在URL中可以看 ...
- Spring与Jdbc Demo
方法一:继承JdbcTemplate来实现 1.配置applicationContext <!-- 获取数据源连接 dbcp --> <bean id="dataSourc ...
- Cocos_Code_Ide学习(一):理解Cocos Lua Project下的frameworks的proj.win32
第一次写,不知道有没有用,有不对的地方,接受大家的批评.勿喷,谢谢. 1.首先,创建工程 ------------------------------------------------------- ...
- 中级Perl 第三章课后习题
3. 10. 1. 练习1 [25 分钟] 读当前目录的文件列表并转换成全路径.不能用shell 命令或外部程序读当前目 录.Perl 的File::Spec 和Cwd 两个模块对这个程序有帮助.每个 ...
- jsonp是什么以及jsonp的使用
1概述 Jsonp(JSON with Padding)是资料格式 json 的一种“使用模式”,可以让网页从别的网域获取资料.由于同源策略,一般来说位于 server1.example.com 的网 ...
- linux自动备份文件和数据库并上传到指定的远程FTP中
直接把以下脚本复制到/root/backup.sh[root@lvtao.net ~]# chmod +x /root/backup.sh[root@lvtao.net ~]# crontab -e0 ...
- 项目知识点.Part2
1. 取消collectionView头视图重叠情况:以下两种情况效果一样 但是有一点点bug 每次remove之后 需要把视图刷到上面才会显示(后续会改进方法) for (UIView *view ...
- EJB
Enterprise JavaBean,企业级javabean,是J2EE的一部分,定义了一个用于 开发基于组件的企业多重应用程序的标准.其特点包括网络服务支持和核心开发工具(SDK). 是Jav ...