Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5699   Accepted: 2855

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

Source

 
坑爹的poj啊注意最后用G++提交时一定要把输出的double对应的lf改为f
题目意思:给出一些球体的球心坐标和半径,需要用最短的路径连通这些球体,(这里忽略路径的宽度),先让你求出连通这些球体的最短路径。 
注意:连通时不是连通球心,而是 球面。
#include<stdio.h>
#include<string.h>
#include<math.h>
#define INF 0x3ffffff
int n;
double x[110],y[110],z[110],r[110];
double map[110][110];
double low[110];
int vis[110];
double fun(double x1,double y1,double z1,double r1,double x2,double y2,double z2,double r2)
{
if(sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2))-r1-r2<=0)
return 0;
else
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2))-r1-r2;
}
void init()
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j)
map[i][j]=0;
else
map[i][j]=INF;
}
}
}
void getmap()
{
int i,j;
for(i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
for(i=1;i<n;i++)
{
for(j=i+1;j<=n;j++)
map[i][j]=map[j][i]=fun(x[i],y[i],z[i],r[i],x[j],y[j],z[j],r[j]);
}
}
void prime()
{
int i,j,next;
double min,mindis=0;
int ok=0;
memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++)
low[i]=map[1][i];
vis[1]=1;
for(i=1;i<n;i++)
{
min=INF;
for(j=1;j<=n;j++)
{
if(!vis[j]&&min>low[j])
{
min=low[j];
next=j;
}
}
mindis+=min;
vis[next]=1;
for(j=1;j<=n;j++)
{
if(!vis[j]&&low[j]>map[next][j])
low[j]=map[next][j];
}
}
printf("%.3f\n",mindis);
}
int main()
{
while(scanf("%d",&n),n)
{
init();
getmap();
prime();
}
return 0;
}

  

poj 2031 Building a Space Station【最小生成树prime】【模板题】的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ - 2031 Building a Space Station 【PRIME】

    题目链接 http://poj.org/problem?id=2031 题意 给出N个球形的 个体 如果 两个个体 相互接触 或者 包含 那么 这两个个体之间就能够互相通达 现在给出若干个这样的个体 ...

  4. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

随机推荐

  1. C#中Dictionary、ArrayList、Hashtable和Array的区别

    IDictionary接口是所有字典类集合的基本接口,该接口与ICollection,IEnumerable接口是所有非泛型类集合的最基本的接口 IEnumerable接口用于公开枚举数,该枚举数支持 ...

  2. ios8及以前的特性

    目前最新系统为ios8.以下为历代系统的回顾: iOS 1 关键词:iPhone的诞生 也许放在现在来看,当时的情景很难想象.当第一代iPhone正式发布时,在某些功能和方面其实是要远远落后于当时的竞 ...

  3. SGU 165.Basketball

    题意       输入n个在[1.95,2.05]范围内的数.       保证他们的平均数为2.00.       现在要求把这些数调整出一个顺序,       使得任意长度为K的子段和与2.00* ...

  4. 《tr命令》-linux命令五分钟系列之六

    本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc 希望您能通过捐款的方式支持Linux大棚博客的运行和发展.请见“关于捐款” == ...

  5. python split()黑魔法

    split()用法: #!/usr/bin/python str = "Line1-abcdef \nLine2-abc \nLine4-abcd"; print str.spli ...

  6. Linux redhat

    挂载U盘 fdisk -l 可以列出所有的分区,包括没有挂上的分区和usb设备.我一般用这个来查找需要挂载的分区的位置,比如挂上u盘. mount /dev/sdb1 usb/

  7. C# winform 递归选中TreeView子节点

    /// <summary> /// 递归选中所有的自节点 /// </summary> /// <param name="nodeThis">T ...

  8. ThinkPHP框架下,给jq动态添加的标签添加点击事件移除标签

    jq移除标签主要就是$("#要移除的id").remove();不再赘述,这里要提醒的是jq中动态添加标签后怎样添加点击事件.一般的jq添加点击事件是用这种方法$("#i ...

  9. pytesser的使用

    pytesser以及其依赖插件下载地址:链接: http://pan.baidu.com/s/1i3zgpjJ 密码: ueyy 在学习Webdriver的过程中遇到验证码的识别问题,问了度娘知道了p ...

  10. Obj-C的hello,world 1

    不得不说,Obj-C所谓的中缀表达式真的蛮奇怪的,当无参或者只有一个参数时看起来还不错: //无参数的方法 -(void) say; [employee say]; //只有一个参数的方法 -(voi ...