bzoj 3158 千钧一发(最小割)
3158: 千钧一发
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 767 Solved: 290
[Submit][Status][Discuss]
Description

Input
第一行一个正整数N。
第二行共包括N个正整数,第 个正整数表示Ai。
第三行共包括N个正整数,第 个正整数表示Bi。
Output
共一行,包括一个正整数,表示在合法的选择条件下,可以获得的能量值总和的最大值。
Sample Input
4
3 4 5 12
9 8 30 9
Sample Output
HINT
1<=N<=1000,1<=Ai,Bi<=10^6
Source
【思路】
最小割。
注意到ai,aj同时是偶数或同时是奇数时必定可以被同时选出:
1 同为偶数满足条件2
2 同为奇数时有(2a+1)^2+(2b+1)^2=2(2a^2+2b^2+2a+2b+1),所以满足条件1。
以此构二分图,设奇数为X结点偶数为Y结点,如果不满足任一条件则连边(Xi,Yj,INF),同时相应连S到X,Y到T的边容量为b,那么答案就是一个二分图最小割,即通过删除一些结点使得满足剩下的结点不相邻且有b之和最小。
【代码】
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int maxn = +;
const int INF = 1e9+1e9; struct Edge{ int u,v,cap,flow;
}; struct Dinic {
int n,m,s,t;
int d[maxn],cur[maxn],vis[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
for(int i=;i<n;i++) G[i].clear();
es.clear();
}
void AddEdge(int u,int v,int cap) {
es.push_back((Edge){u,v,cap,});
es.push_back((Edge){v,u,,});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
}
bool bfs() {
queue<int> q;
memset(vis,,sizeof(vis));
vis[s]=; d[s]=; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop();
for(int i=;i<G[u].size();i++) {
Edge &e=es[G[u][i]];
int v=e.v;
if(!vis[v] && e.cap>e.flow) {
vis[v]=;
d[v]=d[u]+;
q.push(v);
}
}
}
return vis[t];
}
int dfs(int u,int a) {
if(u==t || a==) return a;
int f,flow=;
for(int& i=cur[u];i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(d[v]==d[u]+ && (f=dfs(v,min(a,e.cap-e.flow)))>) {
e.flow+=f;
es[G[u][i]^].flow-=f;
flow+=f , a-=f;
if(!a) break;
}
}
return flow;
}
int maxflow(int s,int t) {
this->s=s , this->t=t;
int flow=;
while(bfs()) {
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
} dc; int n;
int a[maxn],b[maxn]; bool issqr(LL x) { return sqrt(x)*sqrt(x) == x;
}
int gcd(int x,int y) {
return y==? x:gcd(y,x%y);
}
bool jud(LL x,LL y) {
LL t=x*x+y*y , sq=sqrt(t);
if(sq*sq!=t) return ;
if(gcd(x,y)>) return ;
return ;
} int main() {
scanf("%d",&n);
dc.init(n+);
int s=n,t=s+;
int ans=;
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++) scanf("%d",&b[i]) , ans+=b[i];
for(int i=;i<n;i++)
if((a[i]&)) dc.AddEdge(s,i,b[i]);
else dc.AddEdge(i,t,b[i]);
for(int i=;i<n;i++) for(int j=;j<n;j++)
if((a[i]&) && (a[j]&)==)
if(!jud(a[i],a[j])) dc.AddEdge(i,j,INF);
ans-=dc.maxflow(s,t);
printf("%d",ans);
return ;
}
bzoj 3158 千钧一发(最小割)的更多相关文章
- bzoj 3158 千钧一发 —— 最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...
- BZOJ 3158 千钧一发 最小割
分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...
- bzoj 3158: 千钧一发【最小割】
这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
- BZOJ 3158: 千钧一发
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1201 Solved: 446[Submit][Status][Discuss ...
- bzoj 3158 千钧一发——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)
题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
- Linux试玩指令开机关机
Linux内核最初只是由芬兰人李纳斯·托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的. Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和U ...
- oracle 的 startup,startup mount,startup nomount之间的区别
startup,startup mount,startup nomount之间的区别 startup nomount选项:(读初始化参数文件,启动实例) startup nomount选项启动实例 ...
- TOM大师脚本-show space 多个版本,谢谢大牛们
示例一 该脚本需区分 对象的管理方式是 自动还是 手动, 对手动管理方式 的表显示很全面 SQL> exec show_space_old('MAN_TAB','DEV','TABLE'); F ...
- IOS常用开源库
转自:http://www.csdn.net/article/2013-06-18/2815806-GitHub-iOS-open-source-projects-two/1 1. AFNetwork ...
- POJ3285 River Hopscotch(最大化最小值之二分查找)
POJ3285 River Hopscotch 此题是大白P142页(即POJ2456)的一个变形题,典型的最大化最小值问题. C(x)表示要求的最小距离为X时,此时需要删除的石子.二分枚举X,直到找 ...
- contos 安装jdk1.8
JDK安装配置 查看centos系统32位还是64位, 使用命令uname -a;x86是386,586系列的统称,主要是指指令集合.X64才是cpu对64位计算的支持版本. 1. 下载jdk,本例使 ...
- javascript 函数声明问题
(function(){ //运行正常 test1(); function test1() { console.log('123'); }; })() (function(){ //出错,test2未 ...
- 除法(Division ,UVA 725)-ACM集训
参考:http://www.cnblogs.com/xiaobaibuhei/p/3301110.html 算法学到很弱,连这么简单个问题都难到我了.但我偏不信这个邪,终于做出来了.不过,是参照别人的 ...
- Cobar介绍及配置
from:http://code.alibabatech.com/wiki/display/cobar/Home Skip to end of metadata Page restrictions ...
- JSP语法
第3章 JSP语法 [本章专家知识导学] JSP是建立在Java语言基础上的一种Web程序设计语言,具有自己特有的用法和指令.本章首先介绍JSP页面的程序结构,然后讲述JSP程序中经常用到基本的面向 ...