MapReduce概念(转)
昨天,我在Xebia印度办公室发表了一个关于MapReduce的演说。演说进行得很顺利,听众们都能够理解MapReduce的概念(根据他们的反馈)。我成功地向技术听众们(主要是Java程序员,一些Flex程序员和少数的测试人员)解释了MapReduce的概念,这让我感到兴奋。在所有辛勤的工作之后,我们在Xebia印度办公室享用了丰盛的晚餐,然后我径直回了家。
回家后,我的妻子(Supriya)问道:“你的会开得怎么样?”我说还不错。 接着她又问我会议是的内容是什么(她不是从事软件或编程领域的工作的)。我告诉她说MapReduce。“Mapduce,那是什么玩意儿?”她问道: “跟地形图有关吗?”我说不,不是的,它和地形图一点关系也没有。“那么,它到底是什么玩意儿?”妻子问道。 “唔…让我们去Dominos(披萨连锁)吧,我会在餐桌上跟你好好解释。” 妻子说:“好的。” 然后我们就去了披萨店。
我们在Domions点餐之后,柜台的小伙子告诉我们说披萨需要15分钟才能准备好。于是,我问妻子:“你真的想要弄懂什么是MapReduce?” 她很坚定的回答说“是的”。 因此我问道:
我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)
妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。
妻子: 但这和MapReduce有什么关系?
我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.
妻子: 好吧。
我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?
妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。
我: 没错,让我们把MapReduce的概念应用到食谱上。Map和Reduce其实是两种操作,我来给你详细讲解下。
Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。 同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。 所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。
Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。
妻子: 所以,这就是MapReduce?
我: 你可以说是,也可以说不是。 其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。
妻子: 分布式计算? 那是什么?请给我解释下吧。
我: 没问题。
我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?
妻子: 我会找一个能为我大量提供原料的供应商。
我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎? 仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。
妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。
妻子:但是我怎么会制造出不同种类的番茄酱呢?
我:现在你会看到MapReduce遗漏的阶段—搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。 所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。
披萨终于做好了,她点点头说她已经弄懂什么是MapReduce了。我只希望下次她听到MapReduce时,能更好的理解我到底在做些什么。
编注:下面这段话是网上其他人用最简短的语言解释MapReduce:
We want to count all the books in the library. You count up shelf #1, I count up shelf #2. That’s map. The more people we get, the faster it goes.
我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。
Now we get together and add our individual counts. That’s reduce.
现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。
MapReduce概念(转)的更多相关文章
- 大数据核心知识点:Hbase、Spark、Hive、MapReduce概念理解,特点及机制
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用 ...
- MapReduce的一点理解
对于MapReduce编程,大概率的流程用过的人或多或少都清楚,但是归结到细节上,就有的地方不清楚了,下面根据自己的疑问,加上从网上各处,找到的被人的描述,最自己的疑问做出回答. 1. MapRedu ...
- MapReduce:详解Shuffle过程(转)
/** * author : 冶秀刚 * mail : dennyy99@gmail.com */ Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapRedu ...
- MapReduce:详解Shuffle过程
Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阀值,则写到磁盘上,否则直接放到内存中. 官方的Shuffl ...
- MapReduce:详解Shuffle过程
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑, ...
- MapReduce:Shuffle过程的流程
Shuffle过程是MapReduce的核心,Shuffle描述着数据从map task输出到reduce task输入的这段过程. 1.map端
- Hadoop学习记录(4)|MapReduce原理|API操作使用
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce( ...
- [转]MapReduce:详解Shuffle过程
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑, ...
- MapReduce核心 - - - Shuffle
大数据名词(1) -Shuffle Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每 ...
随机推荐
- 南桥先生谈《OUTLIERS》
借来一套语音版的 Outliers 听完了.这本书里有很多故事,可是希望借此找到成功的奥秘恐怕很难,作者做的是一描述而不是预见.听了半天,只听出了六个字: “天时地利人和”. 比如比尔·盖茨,他之所以 ...
- 杂题 UVAoj 10000 Longest Paths
Longest Paths It is a well known fact that some people do not have their social abilities complet ...
- GPS
百度百科 http://baike.baidu.com/link?url=Kl6eLdP-fveCsHt1wHF8TVuOR9wkT2K3qFnWy36PcaYaB1hdgOS_cnTEB0jIg ...
- [Audio processing] 常见语音特征 —— LPC
共振峰产生的原理及其在音质上的体现,共振峰的分布位置是建立在声音产生媒介的共鸣物理结构基础上的(Resonant Physical Structure). 无论是人声还是乐器,它们的声音特性都源自 ...
- 《程序设计中的组合数学》——polya计数
我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知 ...
- HDU 4751 Divide Groups 2013 ACM/ICPC Asia Regional Nanjing Online
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 题目大意:判断一堆人能否分成两组,组内人都互相认识. 解题思路:如果两个人不是相互认识,该两人之 ...
- python 解析xml 文件: Element Tree 方式
环境 python:3.4.4 准备xml文件 首先新建一个xml文件,countries.xml.内容是在python官网上看到的. <?xml version="1.0" ...
- Android Fragment动态添加 FragmentTransaction FragmentManager
Fragment常用的三个类:android.app.Fragment 主要用于定义Fragmentandroid.app.FragmentManager 主要用于在Activity中操作Fragme ...
- [置顶] 数据持久层(DAO)常用功能–通用API的实现
在Web开发中,一般都分3层. Controller/Action 控制层, Service/Business 服务层/业务逻辑层, Dao 数据访问层/数据持久层. 在学习和工作的实践过程中,我发现 ...
- MySQL的字符编码体系(二)——传输数据编码
MySQL的字符编码体系能够分成两部分:一部分是关于数据库server本身存储数据表时怎样管理字符数据的编码:还有一部分是关于client与数据库server数据传输怎样编码.上一篇MySQL的字符编 ...