机器学习笔记1——Introduction
Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
- E = the experience of playing many games of checkers
- T = the task of playing checkers.
- P = the probability that the program will win the next game.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression" and "classification" problems. In a regressionproblem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in adiscrete output. In other words, we are trying to map input variables into discrete categories.
Example:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discretecategories.
Unsupervised Learning
Unsupervised learning, on the other hand, allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you. It’s not just about clustering. For example, associative memory is unsupervised learning.
Example:
Clustering: Take a collection of 1000 essays written on the US Economy, and find a way to automatically group these essays into a small number that are somehow similar or related by different variables, such as word frequency, sentence length, page count, and so on.
Associative: Suppose a doctor over years of experience forms associations in his mind between patient characteristics and illnesses that they have. If a new patient shows up then based on this patient’s characteristics such as symptoms, family medical history, physical attributes, mental outlook, etc the doctor associates possible illness or illnesses based on what the doctor has seen before with similar patients. This is not the same as rule based reasoning as in expert systems. In this case we would like to estimate a mapping function from patient characteristics into illnesses.
机器学习笔记1——Introduction的更多相关文章
- 机器学习笔记:Gradient Descent
机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python机器学习笔记:不得不了解的机器学习面试知识点(1)
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...
- 机器学习笔记(4):多类逻辑回归-使用gluton
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...
- 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
随机推荐
- Extjs发票管理系统
技术特点:Extjs框架,三层架构,Ajax,json 1.仿office2007菜单.介面美观大方,可动态更改皮肤保存至cookie. 2,json数据源与实体类的相互转换. 3.可下载桌面版登录方 ...
- H5小内容(六)
Web Worker 基本内容 单线程与多线程 Worker可以模拟多线程的效果 定义 - 运行在后台的javascript 注意 - 不能使用DOM ...
- HTML css面试题
1.对WEB标准以及W3C的理解与认识 标签闭合.标签小写.不乱嵌套.提高搜索机器人搜索几率.使用外链css和js脚本.结构行为表现的分离.文件下载与页面速度更快.内容能被更多的用户所访问.内容能被更 ...
- 采用python获得并修改文件编码(原创)
windows和linux采用了不同的编码,这让很多人伤透了脑经,这里我采用了Python的chardet库获得代码的编码,然后修改编码. 1.首先需要安装chardet库,有很多方式,我才用的是比较 ...
- “父窗口拖动的时候Popup不随着父窗口移动”问题的解决方案
我们用WPF用的Popup时候会发现,当 StaysOpen=True 的时候,因为Popup不会消失,在父窗口移走的时候Popup仍旧在原地...作者在国外网站上无意间发现了这个解决方案,拿出来给大 ...
- Django中国|Django中文社区——python、django爱好者交流社区
Django中国致力于成为Python和Django框架等技术的中文开发者学习交流平台. 内容涵盖python教程.python基础.Django教程.python入门.web.py教程.linux教 ...
- 每天学点管理学知识——情绪ABC理论
什么是ABC理论 ABC理论(ABC Theory of Emotion)是由美国心理学家埃利斯创建的.就是认为激发事件A(activating event 的第一个英文字母)只是引发情绪和行为后果C ...
- iOS - instancetype
OC是一门正在迅速发展的语言,ARC,object literals ,subscripting ,blocks,Auto Synthesis,让我们看到它惊人的改变.instancetype是cla ...
- 在ajax当中使用url重写来避免url的暴露
记得一次面试,有这样一道面试题:jsp页面当中需要用到ajax的实现,此时需要调用java的url:此时的问题是如果用户查看页面源码就能看到真是的url,这个问题如何避免.说实话,AJAX我用的只是皮 ...
- Quartz1.8.5例子(十四)
org.quartz.scheduler.instanceName: PriorityExampleScheduler # Set thread count to 1 to force Trigger ...