Select the best path in a matrix
Amazon interview question:
Given a 2-dimensional array with arbitrary sizes and contains random positive values, you are required to move from the first element [0][0] to the last element [n][n] using the path which will yield the maximum sum of all the elements traversed. You can only move right and down; NOT left and up.
With brute force,this question can be solved by our thought but not computer,because time complexity is exponential.Actually it's a typical DP question,and we should try our best to keep track of something useful to save CPU while we are running in the matrix.I mean for each step we take,we should make sure that it's the optimized choice,which can be used to make choices later.So what does it mean by "later"?This is the point of every DP problem.Most of the time,when we figure out this core problem,we are just near the final solution.Check the code below.
1 /*******************************************
2 Author:Zhou You
3 Time:2014.09.07
4 Feature:finding the optimized path in an matrix
5 *******************************************/
6 #include <iostream>
7 #include <cstdio>
8 #include <algorithm>
9
10 using namespace std;
11
12 void BuildMatrix(int *** pmaze,unsigned row_num,unsigned column_num)
13 {
14 *pmaze = new int*[row_num];
15 for(unsigned i=0;i<row_num;++i){
16 (*pmaze)[i] = new int[column_num];
17 }
18 }
19
20 void ReleaseMatrix(int ***pmaze,unsigned row_num)
21 {
22 if(!pmaze) return;
23
24 for(unsigned i=0;i<row_num;++i){
25 delete [](*pmaze)[i];
26 }
27
28 delete [](*pmaze);
29 }
30
31 void CoreSolve(int ***ppDistanceMatrix,unsigned matrix_size)
32 {
33 for(int i=0;i<matrix_size;++i){
34 for(int j=i;j<matrix_size;++j){
35 if(i-1>=0&&j-1>=0){
36 (*ppDistanceMatrix)[i][j] += max((*ppDistanceMatrix)[i-1][j],(*ppDistanceMatrix)[i][j-1]);
37 }else if(i-1>=0){
38 (*ppDistanceMatrix)[i][j] += (*ppDistanceMatrix)[i-1][j];
39 }else if(j-1>=0){
40 (*ppDistanceMatrix)[i][j] += (*ppDistanceMatrix)[i][j-1];
41 }
42 }
43
44 for(int k=i+1;k<matrix_size;++k){
45 if(k-1>=0&&i-1>=0){
46 (*ppDistanceMatrix)[k][i] += max((*ppDistanceMatrix)[k-1][i],(*ppDistanceMatrix)[k][i-1]);
47 }else if(k-1>=0){
48 (*ppDistanceMatrix)[k][i] += (*ppDistanceMatrix)[k-1][i];
49 }else if(i-1>=0){
50 (*ppDistanceMatrix)[k][i] += (*ppDistanceMatrix)[k][i-1];
51 }
52 }
53 }
54 }
55
56 void Solve()
57 {
58 unsigned matrix_size = 0;
59 int **ppmatrix = NULL;
60 cin>>matrix_size;
61 BuildMatrix(&ppmatrix,matrix_size,matrix_size);
62 for(unsigned i=0;i<matrix_size;++i){
63 for(unsigned j=0;j<matrix_size;++j){
64 cin>>ppmatrix[i][j];
65 }
66 }
67
68 int **ppDistanceMatrix = NULL;
69 BuildMatrix(&ppDistanceMatrix,matrix_size,matrix_size);
70 for(unsigned i=0;i<matrix_size;++i){
71 for(unsigned j=0;j<matrix_size;++j){
72 ppDistanceMatrix[i][j]=ppmatrix[i][j];
73 }
74 }
75
76 CoreSolve(&ppDistanceMatrix,matrix_size);
77 cout<<ppDistanceMatrix[matrix_size-1][matrix_size-1];
78
79 ReleaseMatrix(&ppmatrix,matrix_size);
80 ReleaseMatrix(&ppDistanceMatrix,matrix_size);
81 }
82
83 int main()
84 {
85 freopen("data.in","r",stdin);
86 freopen("data.out","w",stdout);
87
88 unsigned case_num = 0;
89 cin>>case_num;
90
91 for(unsigned i=1;i<=case_num;++i){
92 cout<<"Case #"<<i<<": ";
93 Solve();
94 cout<<endl;
95 }
96
97 return 0;
98 }
Cases in data.in file
3
3
1 2 8
7 20 8
5 3 8
3
1 2 8
7 0 8
5 3 8
2
1 2
3 4
output in data.out file
Case #1: 44
Case #2: 27
Case #3: 8
Pls let me know if you find any mistakes above.Thx.
Select the best path in a matrix的更多相关文章
- Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix)
Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix) 深度优先搜索的解题详细介绍,点击 给定一个整数矩 ...
- 【LeetCode】329. Longest Increasing Path in a Matrix 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/longest- ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- Longest Increasing Path in a Matrix -- LeetCode 329
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- LeetCode #329. Longest Increasing Path in a Matrix
题目 Given an integer matrix, find the length of the longest increasing path. From each cell, you can ...
- Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- LeetCode Longest Increasing Path in a Matrix
原题链接在这里:https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, ...
- leetcode@ [329] Longest Increasing Path in a Matrix (DFS + 记忆化搜索)
https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, find the ...
- [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
随机推荐
- 2016031901 - ubuntu15.1安装驱动
个人使用u盘安装的ubuntu15.1,安装后找不到无线,主要是驱动没有安装的问题. 解决方案如下: 01.wife无法找到 02.pool文件夹内都是驱动,我们需要的网络驱动也在内 03.网络驱动包 ...
- Microsoft SQL Server 2008 R2 中文安装说明
Microsoft SQL Server 2008 基本安装说明 安装SQL2008的过程与SQL2005的程序基本一样,只不过在安装的过程中部分选项有所改变,当然如果只熟悉SQL2000安装的同志来 ...
- TypeScript学习指南第一章--基础数据类型(Basic Types)
基础数据类型(Basic Types) 为了搭建应用程序,我们需要使用一些基础数据类型比如:numbers,strings,structures,boolean等等. 在TypeScript中除了Ja ...
- 导入NGUI插件
在Unity编辑器顶部菜单栏中的Assets菜单中选择Import Package,然后选择Custom Package(自定义资源包),弹出资源路径窗口,在其中找到NGUI资源包所在的位置,单击”打 ...
- protues仿真 51点亮点阵
电路图 程序 /*============================== 点亮点阵心形 ================================*/ #include <REGX5 ...
- Java之向左添加零(000001)第二种方法
//待测试数据 int i = 100; //得到一个NumberFormat的实例 NumberFormat nf = NumberFormat.getInstance(); //设置是否使用分组 ...
- mysql的错误:The server quit without updating PID file /usr/local/mysql/data/door.pid).
mysql错误解决: 先 参考:http://www.jb51.net/article/48625.htm 参考第四条: mysql在启动时没有指定配置文件时会使用/etc/my.cnf配置文件,请打 ...
- pgrep 查询进程的工具
pgrep 1:简介 pgrep 是通过程序的名字来查询进程的工具,一般是用来判断程序是否正在运行.在服务器的配置和管理中,这个工具常被应用,简单明了: 1:用法 #pgrep 参数选项 程序名 常用 ...
- 分别取商和余数:divmod(a, b)
使用函数:divmod(a, b)可以实现分别取商和余数的操作: >>> divmod(123,3) (41, 0) >>> divmod(200,6) (33, ...
- C++ new operator, delete operator, operator new, operator delete, new placement
http://www.younfor.com/cpp-new-placement-new-operator-new.html http://www.cnblogs.com/luxiaoxun/arch ...