Select the best path in a matrix
Amazon interview question:
Given a 2-dimensional array with arbitrary sizes and contains random positive values, you are required to move from the first element [0][0] to the last element [n][n] using the path which will yield the maximum sum of all the elements traversed. You can only move right and down; NOT left and up.
With brute force,this question can be solved by our thought but not computer,because time complexity is exponential.Actually it's a typical DP question,and we should try our best to keep track of something useful to save CPU while we are running in the matrix.I mean for each step we take,we should make sure that it's the optimized choice,which can be used to make choices later.So what does it mean by "later"?This is the point of every DP problem.Most of the time,when we figure out this core problem,we are just near the final solution.Check the code below.
1 /*******************************************
2 Author:Zhou You
3 Time:2014.09.07
4 Feature:finding the optimized path in an matrix
5 *******************************************/
6 #include <iostream>
7 #include <cstdio>
8 #include <algorithm>
9
10 using namespace std;
11
12 void BuildMatrix(int *** pmaze,unsigned row_num,unsigned column_num)
13 {
14 *pmaze = new int*[row_num];
15 for(unsigned i=0;i<row_num;++i){
16 (*pmaze)[i] = new int[column_num];
17 }
18 }
19
20 void ReleaseMatrix(int ***pmaze,unsigned row_num)
21 {
22 if(!pmaze) return;
23
24 for(unsigned i=0;i<row_num;++i){
25 delete [](*pmaze)[i];
26 }
27
28 delete [](*pmaze);
29 }
30
31 void CoreSolve(int ***ppDistanceMatrix,unsigned matrix_size)
32 {
33 for(int i=0;i<matrix_size;++i){
34 for(int j=i;j<matrix_size;++j){
35 if(i-1>=0&&j-1>=0){
36 (*ppDistanceMatrix)[i][j] += max((*ppDistanceMatrix)[i-1][j],(*ppDistanceMatrix)[i][j-1]);
37 }else if(i-1>=0){
38 (*ppDistanceMatrix)[i][j] += (*ppDistanceMatrix)[i-1][j];
39 }else if(j-1>=0){
40 (*ppDistanceMatrix)[i][j] += (*ppDistanceMatrix)[i][j-1];
41 }
42 }
43
44 for(int k=i+1;k<matrix_size;++k){
45 if(k-1>=0&&i-1>=0){
46 (*ppDistanceMatrix)[k][i] += max((*ppDistanceMatrix)[k-1][i],(*ppDistanceMatrix)[k][i-1]);
47 }else if(k-1>=0){
48 (*ppDistanceMatrix)[k][i] += (*ppDistanceMatrix)[k-1][i];
49 }else if(i-1>=0){
50 (*ppDistanceMatrix)[k][i] += (*ppDistanceMatrix)[k][i-1];
51 }
52 }
53 }
54 }
55
56 void Solve()
57 {
58 unsigned matrix_size = 0;
59 int **ppmatrix = NULL;
60 cin>>matrix_size;
61 BuildMatrix(&ppmatrix,matrix_size,matrix_size);
62 for(unsigned i=0;i<matrix_size;++i){
63 for(unsigned j=0;j<matrix_size;++j){
64 cin>>ppmatrix[i][j];
65 }
66 }
67
68 int **ppDistanceMatrix = NULL;
69 BuildMatrix(&ppDistanceMatrix,matrix_size,matrix_size);
70 for(unsigned i=0;i<matrix_size;++i){
71 for(unsigned j=0;j<matrix_size;++j){
72 ppDistanceMatrix[i][j]=ppmatrix[i][j];
73 }
74 }
75
76 CoreSolve(&ppDistanceMatrix,matrix_size);
77 cout<<ppDistanceMatrix[matrix_size-1][matrix_size-1];
78
79 ReleaseMatrix(&ppmatrix,matrix_size);
80 ReleaseMatrix(&ppDistanceMatrix,matrix_size);
81 }
82
83 int main()
84 {
85 freopen("data.in","r",stdin);
86 freopen("data.out","w",stdout);
87
88 unsigned case_num = 0;
89 cin>>case_num;
90
91 for(unsigned i=1;i<=case_num;++i){
92 cout<<"Case #"<<i<<": ";
93 Solve();
94 cout<<endl;
95 }
96
97 return 0;
98 }
Cases in data.in file
3
3
1 2 8
7 20 8
5 3 8
3
1 2 8
7 0 8
5 3 8
2
1 2
3 4
output in data.out file
Case #1: 44
Case #2: 27
Case #3: 8
Pls let me know if you find any mistakes above.Thx.
Select the best path in a matrix的更多相关文章
- Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix)
Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix) 深度优先搜索的解题详细介绍,点击 给定一个整数矩 ...
- 【LeetCode】329. Longest Increasing Path in a Matrix 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/longest- ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- Longest Increasing Path in a Matrix -- LeetCode 329
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- LeetCode #329. Longest Increasing Path in a Matrix
题目 Given an integer matrix, find the length of the longest increasing path. From each cell, you can ...
- Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- LeetCode Longest Increasing Path in a Matrix
原题链接在这里:https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, ...
- leetcode@ [329] Longest Increasing Path in a Matrix (DFS + 记忆化搜索)
https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, find the ...
- [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
随机推荐
- C# - 接口,继承
接口 接口是把公共实例(非静态)方法和属性组合起来,以封装特定功能的一个集合.不能像实例化一个类那样实例化接口.接口不能包含实现其成员的任何代码,而只能定义成员本身.实现过程必须在实现接口的类中完成. ...
- 黄聪:如何使用CodeSmith批量生成代码(转:http://www.cnblogs.com/huangcong/archive/2010/06/14/1758201.html)
先看看CodeSmith的工作原理: 简单的说:CodeSmith首先会去数据库获取数据库的结构,如各个表的名称,表的字段,表间的关系等等,之后再根据用户自定义好的模板文件,用数据库结构中的关键字替代 ...
- MongoDB 覆盖索引查询
MongoDB 覆盖索引查询 官方的MongoDB的文档中说明,覆盖查询是以下的查询: 所有的查询字段是索引的一部分 所有的查询返回字段在同一个索引中 由于所有出现在查询中的字段是索引的一部分, Mo ...
- vs2013运行c语言出现:无法查找或打开 PDB 文件。
vs2013运行c语言出现:无法查找或打开 PDB 文件. “ConsoleApplication1.exe”(Win32): 已加载“C:\Users\hp\Documents\Visual ...
- 一个C语言宏展开问题
转自一个C语言宏展开问题 一个令人比较迷惑的问题,学C语言好多年,今天终于搞明白,记之. ------------------------------------------------------- ...
- String类的split方法以及StringTokenizer
split方法可以根据指定的表达式regex将一个字符串分割成一个子字符串数组. 它的参数有两种形式,也即:split(String regex)和split(String regex, int li ...
- configure脚本参数介绍
configure脚本有大量的命令行选项. 下面对每一个选项进行简略的介绍: --cache-file=FILE'configure' 会在你的系统上测试存在的特性(或者bug!).为了加速随后进行的 ...
- 如何解决eclipse中的中文乱码问题:
方法一:代码里面进行改变编码 1. 编码方式的gbk和utf不同,不可以互相转换,只有byte和utf或者byte和gbk之间的转换,之间的转码如下:
- 这些小众软件让你的效率提升N倍!(必备,收藏)
大部分的我们,电脑买来之后,软件越装越多,电脑越来越卡,导致工作的效率也是越来越低. 同时还可能长期处于软件安装完又卸载的无限恶性循环中.提高工作效率是我们利用电脑办公的一大优势,安装好的软件更是可以 ...
- poj3280Cheapest Palindrome(记忆化)
链接 真的1A了.. 一开始想复杂了 想着补全再删 没想好 后来想到递归 大的回文串是由小的推过来的 一直递归下去 对于当前的i,j可以选择保留或者删除 选个最小的 #include <iost ...