1153 - Internet Bandwidth
Time Limit: 2 second(s) Memory Limit: 32 MB

On the Internet, machines (nodes) are richly interconnected, and many paths may exist between a given pair of nodes. The total message-carrying capacity (bandwidth) between two given nodes is the maximal amount of data per unit time that can be transmitted from one node to the other. Using a technique called packet switching; this data can be transmitted along several paths at the same time.

For example, the following figure shows a network with four nodes (shown as circles), with a total of five connections among them. Every connection is labeled with a bandwidth that represents its data-carrying capacity per unit time.

In our example, the bandwidth between node 1 and node 4 is 25, which might be thought of as the sum of the bandwidths 10 along the path 1-2-4, 10 along the path 1-3-4, and 5 along the path 1-2-3-4. No other combination of paths between nodes 1 and 4 provides a larger bandwidth.

You must write a program that computes the bandwidth between two given nodes in a network, given the individual bandwidths of all the connections in the network. In this problem, assume that the bandwidth of a connection is always the same in both directions (which is not necessarily true in the real world).

Input

Input starts with an integer T (≤ 30), denoting the number of test cases.

Every description starts with a line containing an integer n (2 ≤ n ≤ 100), which is the number of nodes in the network. The nodes are numbered from 1 to n. The next line contains three numbers st, and c. The numbers s and t are the source and destination nodes, and the number c (c ≤ 5000, s ≠ t) is the total number of connections in the network. Following this are c lines describing the connections. Each of these lines contains three integers: the first two are the numbers of the connected nodes, and the third number is the bandwidth of the connection. The bandwidth is a non-negative number not greater than 1000.

There might be more than one connection between a pair of nodes, but a node cannot be connected to itself. All connections are bi-directional, i.e. data can be transmitted in both directions along a connection, but the sum of the amount of data transmitted in both directions must be less than the bandwidth.

Output

For each case of input, print the case number and the total bandwidth between the source node s and the destination node t.

Sample Input

Output for Sample Input

2

4

1 4 5

1 2 20

1 3 10

2 3 5

2 4 10

3 4 20

4

1 4 2

1 4 20

1 4 20

Case 1: 25

Case 2: 40

注意:此题是无向图的网络流,在处理反向边的时候,不能把反向边的容量设置为0 而要设置的和正向边一样

#include<stdio.h>
#include<string.h>
#include<queue>
#include<math.h>
#include<algorithm>
#define MAX 10010
#define INF 0x7ffff
#define MAXM 100100
using namespace std;
struct node
{
int from,to,cap,flow,next;
}edge[MAXM];
int dis[MAX],vis[MAX];
int cur[MAX];
int ans,head[MAX];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
edge[ans]={u,v,w,0,head[u]};
head[u]=ans++;
edge[ans]={v,u,w,0,head[v]};//这是有向图 无向图 edge[ans]={v,u,0,0,head[v]};
head[v]=ans++;
}
int start,hui,sum;
void getmap()
{
scanf("%d%d%d",&start,&hui,&sum);
for(int i=1;i<=sum;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
}
int bfs(int beg,int end)
{
queue<int>q;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
while(!q.empty()) q.pop();
vis[beg]=1;
dis[beg]=0;
q.push(beg);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
node E=edge[i];
if(!vis[E.to]&&E.cap>E.flow)
{
dis[E.to]=dis[u]+1;
vis[E.to]=1;
if(E.to==end) return 1;
q.push(E.to);
}
}
} return 0;
}
int dfs(int x,int a,int end)
{
if(x==end||a==0)
return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=edge[i].next)
{
node& E=edge[i];
if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)
{
E.flow+=f;
edge[i^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int maxflow(int beg,int end)
{
int flow=0;
while(bfs(beg,end))
{
memcpy(cur,head,sizeof(head));
flow+=dfs(beg,INF,end);
}
return flow;
}
int main()
{
int t,k,n,m;
scanf("%d",&t);
k=1;
while(t--)
{
scanf("%d",&n);
init();
getmap();
printf("Case %d: %d\n",k++,maxflow(start,hui));
}
return 0;
}

  

light oj 1153 - Internet Bandwidth【网络流无向图】的更多相关文章

  1. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  2. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

  3. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  4. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  5. light oj 1007 Mathematically Hard (欧拉函数)

    题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...

  6. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  7. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  8. Jan's light oj 01--二分搜索篇

    碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...

  9. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

随机推荐

  1. python 常用模块(转载)

    转载地址:http://codeweblog.com/python-%e5%b8%b8%e7%94%a8%e6%a8%a1%e5%9d%97/ adodb:我们领导推荐的数据库连接组件bsddb3:B ...

  2. VMWare虚拟机系统网络配置

  3. POJ 3264 Balanced Lineup(RMQ)

    点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...

  4. android 在Fragment里添加Theme主题

    @Override public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanc ...

  5. easyui表单提交,后台获取不到值

    J2ee开发,使用easyui表单提交,在ie中可以正常将参数传递到后台,但使用firefox,chrome都无法将easyui的combobox值传递到后台,使用alert($('#form').s ...

  6. ANDROID_MARS学习笔记_S01原始版_010_ContentProvider

    一.简介 一.代码1.xml(1)main.xml <?xml version="1.0" encoding="utf-8"?> <Linea ...

  7. HashMap与HashTable联系与区别

    HashMap与HashTable 1.hashMap去掉了HashTable 的contains方法,但是加上了containsValue()和containsKey()方法. 2.hashTabl ...

  8. ActionBar官方教程(8)ShareActionProvider与自定义操作项提供器

    Adding an Action Provider Similar to an action view, an action provider replaces an action button wi ...

  9. WCF - Windows Service Hosting

    WCF - Windows Service Hosting The operation of Windows service hosting is a simple one. Given below ...

  10. NOI2011道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1974  Solved: 550[Submit][Status ...