都LCP了很显然是要用到后缀数组的

显然前面的那个东西是可以直接算出来的

关键在于LCP的和怎么快速的计算

不难想到穷举height[i],然后判断这个height[i]可能成为多少对后缀的LCP

考虑到LCP(i,j)=min(height[rank[i]+1~rank[j]]) 假定rank[i]<rank[j];

假设height[l]是左边第一个小于height[i]的,height[r]是右边第一个小于height[i]的

则height[i]是(i-l)(r-i)对后缀的LCP

但这样有一个问题,相同height可能会被重复计算

为了避免重复,我们定义height[r]是右边第一个不大于height[i]的

这样就有两种方法来实现

第一种是二分+rmq,但不幸的是我竟然写超时,而且我觉得容易出错

第二种是利用单调队列,我们把height[i]对应的l,r定义为左右边界,记为l[i],r[i];

计算左边界和右边界是相似的,这里我们讨论左边界

假如height[j]<=height[k] (j>k) 那么对于之后的height[i],

要么能延伸到k之前(height[i]<=height[j]),要么只能左边界就是j(height[i]>height[j]),不用比较height[k]

显然我们要维护一个单调不降的队列就行了

最后计算的时候注意用int64

 var rank,sa,y,q,x,sum,h,l,r:array[..] of longint;
    s:ansistring;
    i,n,m,p,j,t:longint;
    ans,z:int64; function min(a,b:longint):longint;
  begin
    if a>b then exit(b) else exit(a);
  end; procedure suffix;
  var i,j,p:longint;
  begin
    for i:= to n do
    begin
      y[i]:=ord(s[i]);
      inc(sum[y[i]]);
    end;
    m:=;
    for i:= to m do
      inc(sum[i],sum[i-]);
    for i:=n downto do
    begin
      sa[sum[y[i]]]:=i;
      dec(sum[y[i]]);
    end;
    p:=;
    rank[sa[]]:=;
    for i:= to n do
    begin
      if y[sa[i]]<>y[sa[i-]] then inc(p);
      rank[sa[i]]:=p;
    end;
    m:=p;
    j:=;
    while m<n do
    begin
      fillchar(sum,sizeof(sum),);
      y:=rank;
      p:=;
      for i:=n-j+ to n do
      begin
        inc(p);
        x[p]:=i;
      end;
      for i:= to n do
        if sa[i]>j then
        begin
          inc(p);
          x[p]:=sa[i]-j;
        end;       for i:= to n do
      begin
        rank[i]:=y[x[i]];
        inc(sum[rank[i]]);
      end;
      for i:= to m do
        inc(sum[i],sum[i-]);
      for i:=n downto do
      begin
        sa[sum[rank[i]]]:=x[i];
        dec(sum[rank[i]]);
      end;
      p:=;
      rank[sa[]]:=;
      for i:= to n do
      begin
        if (y[sa[i]]<>y[sa[i-]]) or (y[sa[i]+j]<>y[sa[i-]+j]) then inc(p);
        rank[sa[i]]:=p;
      end;
      m:=p;
      j:=j shl ;
    end;
    h[]:=;
    p:=;
    for i:= to n do
    begin
      if rank[i]= then continue;
      j:=sa[rank[i]-];
      while (i+p<=n) and (j+p<=n) and (s[i+p]=s[j+p]) do inc(p);
      h[rank[i]]:=p;
      if p> then dec(p);
    end;
  end; function calc(i,x,y:int64):int64;
  begin
    exit(*h[i]*(i-x)*(y-i));
  end; begin
  readln(s);
  n:=length(s);
  suffix;
  z:=n;
  ans:=(z+)*z div *(z-);
  t:=;
  for i:= to n do
  begin
    while (t>) and (h[q[t]]>=h[i]) do dec(t);
    if t= then l[i]:=
    else l[i]:=q[t];
    inc(t);
    q[t]:=i;
  end;
  t:=;
  for i:=n downto do
  begin
    while (t>) and (h[q[t]]>h[i]) do dec(t);  //注意右边界是第一个不大于的height,防止重复
    if t= then r[i]:=n+
    else r[i]:=q[t];
    inc(t);
    q[t]:=i;
  end;
  for i:= to n do
    ans:=ans-calc(i,l[i],r[i]);
  writeln(ans);
end.

bzoj3238的更多相关文章

  1. 【BZOJ3238】差异(后缀自动机)

    [BZOJ3238]差异(后缀自动机) 题面 BZOJ 题解 前面的东西直接暴力算就行了 其实没必要算的正正好 为了方便的后面的计算 我们不考虑\(i,j\)的顺序问题 也就是先求出\(\sum_{i ...

  2. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  3. 【bzoj3238】 Ahoi2013—差异

    http://www.lydsy.com/JudgeOnline/problem.php?id=3238 (题目链接) 题意 给出一个字符串,求${\sum_{1<=i<j<=n} ...

  4. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  5. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  6. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  7. 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...

  8. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  9. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  10. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

随机推荐

  1. 华为j2ee面试题

    http://blog.csdn.net/chow__zh/article/details/7741312 java基础1.垃圾回收的优点和原理.      Java语言中一个显著的特点就是引入了垃圾 ...

  2. ios专题 - 异步下载加下载进度显示

    [罗国强原创] 今天被刺激了,愤概地要写下这边博文. 说到http异步下载,首先要知道其中的关键类. 关键类是NSURLConnection  NSURLRequest NSMutableURLReq ...

  3. 删除Windows右键不用的选项

    1.使用QQ电脑管家或者360的,一般都有小工具. 2.管理注册表 █以WindowsXP(SP2)为例,有些右键菜单中的选项你并不常用,或者有些软件已被删除,但其仍然占据着右键菜单.要删除这些无用的 ...

  4. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  5. apache基本安装配置

    1.安装apache 1.安装 wget http://mirrors.cnnic.cn/apache//httpd/httpd-2.2.31.tar.gz 2.安装zlib yum install ...

  6. C#面向对象的学习笔记

    1.面向对象的3要素: 封装:将不需要显示的代码封装到一个方法中,只对外提供方法名,用户不需关心内部实现. 继承:子类继承父类,公用父类的代码,大大提高了代码的重用,贴近生活也符合人类的编程思想. 多 ...

  7. XML1_XML基础

    1.XML的作用 XML 被设计用来传输和存储数据.所以XML 是不作为的. 2.简单的描述 XML 文档形成一种树结构. XML 文档必须包含根元素.该元素是所有其他元素的父元素.XML 文档中的元 ...

  8. xml之phpdom操作

    php xml编程XML解析技术介绍 1.php与DOM 2.PHP与XPath 3.SimpleXML DOM(document object model)文档对象模型 把一个文件看做一个对象模型, ...

  9. 韩顺平_JAVA_视频教程_下载(打开迅雷,直接复制链接地址即可下载)

    ed2k://|file|韩顺平.循序渐进学.java.从入门到精通.第0讲-开山篇.avi|37021064|f4fb2fb3db938a642146ccc8f0935fed|h=ao2k3ep7p ...

  10. Csharp Winfrom 多串口通信

    Csharp 多串口通信 顾名思义,多串口通信,普通的PC机一般只有一个串口,现在很多家用的PC都没有串口,那么问题来了,如何保证多串口呢? 有一种神器,MOXA CP-168U Series PCI ...