https://www.luogu.org/problemnew/show/P1835

对于40%,对每个数进行最大$O(\sqrt n)$的判断,因为n比较大所以超时。

想到线性筛,然而我们并不能筛到2e9,时间空间都不允许因为2e9素因子最大也到不了50000,我们预处理出2-50000以内的素数,然后对于每一个数,一个一个的出素因子,进行判断,这里放一下代码。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define LL long long using namespace std;
int l,r,cnt;
bool p[],vis[];
int a[],tot;
void prepare()
{
for(int i=;i<=;i++)
{
if(!p[i])a[++tot]=i;
for(int j=;j<=tot&&i*a[j]<=;j++)
{
p[a[j]*i]=;
if(i%a[j]==)break;
}
}
}
int main()
{
prepare(); scanf("%d%d",&l,&r);
for(int i=l;i<=r;i++)
{
bool f=;
int k=sqrt(i);
for(int j=;a[j]<=k;j++)
{
if(i%a[j]==)
{
f=;
break;
}
}
if(!f)cnt++;
}
printf("%d",cnt);
}

似乎并不是很理想啊,只有90分,那么,我们利用线性筛的思想(用小的素因子来筛大的)。

我们对于每一个质数,最区间内这个数的倍数打上标记,最后统计个数。

然而,你可能会说数据组开不到那么大。

这里我们数组不用开的太大,假设数组为a,那么将l作为数组的第一个元素,这样的话数组最大1000000.

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
long long l,r,cnt,ans;
bool p[];
int a[],tot;
bool vis[];
void prepare()
{
for(int i=;i<=;i++)
{
if(!p[i])a[++tot]=i;
for(int j=;j<=tot&&i*a[j]<=;j++)
{
p[a[j]*i]=;
if(i%a[j]==)break;
}
}
}
int main()
{
prepare();
scanf("%lld%lld",&l,&r);
int c=sqrt(r);
for(int i=;i<=tot&&a[i]<=c;i++)
{
for(long long j=(l/a[i])*a[i];j<=r;j+=a[i])
{
if(j>=l&&j!=a[i])vis[j-l]=;
}
}
for(int i=;i<=r-l;i++)
if(!vis[i])ans++;
printf("%lld",ans);
}

洛谷 P1835 素数密度的更多相关文章

  1. [洛谷P1835]素数密度

    题目大意:求区间[l,r]中素数的个数($1\leq l,r\le 2^{31}$,$r-l\leq 10^6$). 解题思路:首先,用筛法筛出$2~\sqrt{r}$内的素数. 然后用这些素数筛l~ ...

  2. 【数论】8.30题解-prime素数密度 洛谷p1835

    prime 洛谷p1835 题目描述 给定区间[L, R](L <= R <= 2147483647, R-L <= 1000000),请计算区间中 素数的个数. 输入输出 输入 两 ...

  3. 【洛谷P1835】素数密度

    题目描述: 给定区间[L,R](L≤R≤2147483647,R-L≤1000000),请计算区间中素数的个数. 思路: 暴力: 蒟蒻:哦?绿题?这么水?(便打出下面代码) 这绝对是最容易想到的!但, ...

  4. P1835 素数密度_NOI导刊2011提高(04)

    题目描述 给定区间[L,R](L≤R≤2147483647,R-L≤1000000),请计算区间中素数的个数. 输入输出格式 输入格式: 两个数L和R. 输出格式: 一行,区间中素数的个数. 输入输出 ...

  5. [洛谷P1730] 最小密度路径

    类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...

  6. 洛谷 P3912 素数个数

    P3912 素数个数 题目描述 求1,2,\cdots,N1,2,⋯,N 中素数的个数. 输入输出格式 输入格式: 1 个整数NN. 输出格式: 1 个整数,表示素数的个数. 输入输出样例 输入样例# ...

  7. 洛谷P1730最小密度路径

    题目传送门; 首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ...

  8. 洛谷P1730 最小密度路径(floyd)

    题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqsl ...

  9. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

随机推荐

  1. java五行代码导出Excel

    目录 先看代码 再看效果 EasyExcel 附: Java按模板导出Excel---基于Aspose实现 Java无模板导出Excel,Apache-POI插件实现 已经写过两种Excel导出插件了 ...

  2. 通俗理解 React 高阶函数

    定义:高阶组件就是一个函数,且该函数接受一个组件作为参数,并返回一个新的组件. A higher-order component is a function that takes a componen ...

  3. easyui---accordion(手风琴)

    首先配置好easyui环境 1.ACCORDION(手风琴) class:class=easyui-accordion, 事件: 查找: function selectPanel(){ //会弹出输入 ...

  4. [HNOI2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于××师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...

  5. Codeforces Round #432 (Div. 2, based on IndiaHacks Final Round 2017) B

    Arpa is taking a geometry exam. Here is the last problem of the exam. You are given three points a,  ...

  6. jetty jndi数据源

    applicationContext.xml <?xml version="1.0" encoding="utf-8"?> <beans de ...

  7. Net Core下通过Proxy 模式

    Net Core下通过Proxy 模式 NET Core下的WCF客户端也是开源的,这次发布.NET Core 2.0,同时也发布了 WCF for .NET Core 2.0.0, 本文介绍在.NE ...

  8. Codeforces Beta Round #96 (Div. 2) E. Logo Turtle dp

    http://codeforces.com/contest/133/problem/E 题目就是给定一段序列,要求那个乌龟要走完整段序列,其中T就是掉头,F就是向前一步,然后开始在原点,起始方向随意, ...

  9. linux basename命令的使用

    用途 返回一个字符串参数的基本文件名称. 语法 basename String [ Suffix ] 描述 basename 命令读取 String 参数,删除以 /(斜杠) 结尾的前缀以及任何指定的 ...

  10. JAVA基础之基本类型包装类、System类、Math类、Arrays类及大数据运算

    个人理解: 为了方便运算及调用一些方法,我们需要将基本类型的数值转换为对象:不过转换的时候需要特别注意好它们的类型到底是什么,需要调用方法的类名是哪个!特别注意是Byte常量池的相关问题(==):gc ...