mod性质小结

\(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$

\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(a\pm c\equiv b\pm d(\mod m)\)

\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(ac\equiv bd(\mod m)\)

\(a\equiv b(\mod m)\) \(\rightarrow\) \(a^n\equiv b^n(\mod m),n>=0\)

\(ad\equiv bd(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod \frac m{gcd(d,m)}),d\neq 0\)

\(a\equiv b(\mod md)\) \(\rightarrow\) \(a\equiv b(\mod m)\)

\(a\equiv b(\mod m)\)且\(a\equiv b(\mod n)\) \(\rightarrow\) \(a\equiv b(\mod lcm(n,m))\)

\(a\equiv b(\mod nm)\) \(\rightarrow\) \(a\equiv b(\mod m)\)且\(a\equiv b(\mod n),n\perp m\)
继续拆下去可以变成
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod p^{m_p})\)
其中\(p\)为\(m\)分解出来的质因数,\(m_p\)为该质因数有多少个

mod性质 学习笔记的更多相关文章

  1. Miller_Rabbin&&Pollard_Rho 学习笔记

    占坑,待填 I Intro 首先我们考虑这样一个问题 给定一个正整数\(p(p<=1e8)\),请判断它是不是质数 妈妈我会试除法! 于是,我们枚举$ \sqrt p$ 以内的所有数,就可以非常 ...

  2. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  3. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  4. Hash学习笔记

    啊啊啊啊,这篇博客估计是我最早的边写边学的博客了,先忌一忌. 本文章借鉴与一本通提高篇,但因为是个人的学习笔记,因此写上原创. 目录 谁TM边写边学还写这玩意? 后面又加了 Hash Hash表 更多 ...

  5. 我的Android进阶之旅------>Android中编解码学习笔记

    编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...

  6. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  7. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  8. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  9. 「学习笔记」Treap

    「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...

随机推荐

  1. Servlet的引入(即加入Servlet)

    今天讲的Servlet是根据上一章节<创建一个学生信息表,与页面分离>而结合. 一.看图分析 此模式有问题: 1.jsp需要呼叫javabean StudentService stuSer ...

  2. iOS中的数据存储方式_Plist

    plist文件只能存储OC常用数据类型(NSString.NSDictionary.NSArray.NSData.NSNumber等类型)而不能直接存储自定义模型对象; 我们拿NSData举例: /* ...

  3. C#:CodeSmith根据数据库中的表创建C#数据模型Model + 因为没有钱买正版,所以附加自己写的小代码

    对于C#面向对象的思想,我们习惯于将数据库中的表创建对应的数据模型: 但假如数据表很多时,我们手动增加模型类会显得很浪费时间: 这个时候有些人会用微软提供的EntityFrameWork,这个框架很强 ...

  4. comboBox 下拉宽度自适应

    ///适用combobox绑定datatable private void comboBox_DataSourceChanged(object sender, EventArgs e) { Combo ...

  5. CF-1114 (2019/02/11)

    CF-1114 A. Got Any Grapes? skip B. Yet Another Array Partitioning Task 将n个数分成连续的k组,使得每组的前m大的数字的总和最大. ...

  6. 救援(BFS)

    题目描述: 在你的帮助下,Oliver终于追到小X了,可有一天,坏人把小X抓走了.这正是Oliver英雄救美的时候.所以,Oliver又找到哆啦A梦,借了一个机器,机器显示出一幅方格地图,它告诉Oli ...

  7. HTTP-常用配置

    前言 这篇主要介绍HTTP服务程序环境 可能有一些介绍不到,博主能力有限,欢迎大神来纠正改进 HTTP协议从http/0.9到如今的http/2.0中间发生了很大的改变,现在主流的事http/1.1 ...

  8. Tcl/Cmds

  9. PHP redis使用命令

    很有用;以下是redis官方提供的命令使用技巧: 下载地址如下: https://github.com/owlient/phpredis(支持redis 2.0.4) Redis::__constru ...

  10. virtualbox安装win7系统报错(“FATAL:No bootable medium found!”)

    virtualbox属于傻瓜式安装虚拟系统,但博主安装win7系统时,无论怎么调试都还是出现截图所述样式,网上教程很多,但是都不行,其实只有一个根本原因安装的iso镜像不是原生镜像,下载的镜像已经是被 ...