mod性质 学习笔记
mod性质小结
\(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$
\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(a\pm c\equiv b\pm d(\mod m)\)
\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(ac\equiv bd(\mod m)\)
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a^n\equiv b^n(\mod m),n>=0\)
\(ad\equiv bd(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod \frac m{gcd(d,m)}),d\neq 0\)
\(a\equiv b(\mod md)\) \(\rightarrow\) \(a\equiv b(\mod m)\)
\(a\equiv b(\mod m)\)且\(a\equiv b(\mod n)\) \(\rightarrow\) \(a\equiv b(\mod lcm(n,m))\)
\(a\equiv b(\mod nm)\) \(\rightarrow\) \(a\equiv b(\mod m)\)且\(a\equiv b(\mod n),n\perp m\)
继续拆下去可以变成
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod p^{m_p})\)
其中\(p\)为\(m\)分解出来的质因数,\(m_p\)为该质因数有多少个
mod性质 学习笔记的更多相关文章
- Miller_Rabbin&&Pollard_Rho 学习笔记
占坑,待填 I Intro 首先我们考虑这样一个问题 给定一个正整数\(p(p<=1e8)\),请判断它是不是质数 妈妈我会试除法! 于是,我们枚举$ \sqrt p$ 以内的所有数,就可以非常 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- Hash学习笔记
啊啊啊啊,这篇博客估计是我最早的边写边学的博客了,先忌一忌. 本文章借鉴与一本通提高篇,但因为是个人的学习笔记,因此写上原创. 目录 谁TM边写边学还写这玩意? 后面又加了 Hash Hash表 更多 ...
- 我的Android进阶之旅------>Android中编解码学习笔记
编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 「学习笔记」Treap
「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...
随机推荐
- Bootstrap历练实例:默认的列表组
Bootstrap 列表组 本章我们将讲解列表组.列表组件用于以列表形式呈现复杂的和自定义的内容.创建一个基本的列表组的步骤如下: 向元素 <ul> 添加 class .list-grou ...
- sqlserver的实例名忘记了
电脑图标右击/管理/服务和应用程序/服务 也可以直接services.msc打开 打开服务,找到sqlserver的服务,这个服务括号中的名称就是实例名了,但是要加上localhost,也就是loca ...
- MFC里 显示设备上下文CClient dc(this) 和 CPaintDC dc(this)
1 CPaintDC类(1)CPaintDC类是CDC类的一个派生类,该类一般用在响应WM_PAINT消息的函数OnPaint()中.(2)WM_PAINT消息是当窗口的某个区域需要重画时激发的窗口消 ...
- PHPStorm+XDebug进行调试图文教程
这篇文章主要为大家详细介绍了PHPStorm+XDebug进行调试图文教程,内容很丰富,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 另外如果你们加载不出图片,另外的地址:转载地址https:// ...
- Java-JFrame窗体美化
Java-JFrame窗体美化 JFrame默认的窗体比较土,可以通过一定的美化,让窗体表现的比较漂亮,具体要根据设计的设计图进行美化: JFrame美化的大致思路:先将JFrame去除默认美化效果, ...
- destoon 多表联合查询时出现解析错误,parse_str函数解析错误
数据库前缀 wb_ 标签 ,调用文章时获取评论数量 <!--{php $tags=tag("table=article_24 a left join wb_comment_stat ...
- hdu-1231 连续最大子序列(动态规划)
Time limit1000 ms Memory limit32768 kB 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj ...
- Post页面爬取失败__编码问题
python3爬取Post页面时, 报以下错误 "POST data should be bytes or an iterable of bytes. It cannot be of typ ...
- src与href的区别
href: 是指向网络资源所在位置,建立和当前元素(锚点)或当前文档(链接)之间的链接,用于超链接. src:是指向外部资源的位置,指向的内容将会嵌入到文档中当前标签所在位置:在请求src资源时会将其 ...
- Linux的档案权限与目录配置
重点回顾:1.Linux的每个档案中,依据权限分为使用者.群组与其他人三种身份 2.群组最有用的功能之一,就是当你在团队开发资源的时候,且每个账号都可以有多个群组的支持 3.利用"ls -l ...