KNN算法python实现小样例
K近邻算法概述
优点:精度高、对异常数据不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
工作原理:
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,
即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,
将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集
中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中
前K各最相似的数据,这就是k——近邻算法k的出处,通常k是不大于20的整数。最
后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类
K-近邻算法的一般流程
(1)收集数据:可以使用任何方法
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式
(3)分析数据:可以使用任何方法
(4)训练算法:此步骤不适用于k—近邻算法
(5)测试算法:计算错误率
(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法
判定 输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理
from numpy import *
import operator
from os import listdir
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
#距离计算
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
# 按降序排列
sortedDistIndicies = distances.argsort()
classCount={}
#选择距离最小的k个点
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#排序
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount group,labels=createDataSet()
A=classify0([0,0],group,labels,3)
print(A)
K-近邻算法是分类数据最简单最有效的算法。K-近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
K-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。
KNN算法python实现小样例的更多相关文章
- KNN算法--python实现
邻近算法 或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...
- 数据挖掘之分类算法---knn算法(有matlab样例)
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种 ...
- kNN算法python实现和简单数字识别
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...
- KNN算法python实现
1 KNN 算法 knn,k-NearestNeighbor,即寻找与点最近的k个点. 2 KNN numpy实现 效果: k=1 k=2 3 numpy 广播,聚合操作. 这里求距离函数,求某点和集 ...
- KNN算法——python实现
二.Python实现 对于机器学习而已,Python需要额外安装三件宝,分别是Numpy,scipy和Matplotlib.前两者用于数值计算,后者用于画图.安装很简单,直接到各自的官网下载回来安装即 ...
- 决策树python实现小样例
我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优 ...
- adaboost python实现小样例
元算法是对其他算法进行组合的一种方式.单层决策树实际上是一个单节点的决策树.adaboost优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整缺点:对离群点敏感适用数据类型:数值型和标称 ...
- Logistic回归python实现小样例
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Lo ...
- 机器学习之KNN算法
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...
随机推荐
- npm warn weex @1.0.0 no repository field
玩weex出现nmp安装问题总是包这个错,但是其实是安装成功的 npm warn weex@1.0.0 no repository field. 看字面意思大概是package.json里缺少repo ...
- uLua学习之调用Lua函数(五)
前言 在我开始这个系列的第一篇文章中,我就提到了Lua脚本用来实现宿主脚本的配置性和扩展性.上节说到的调用外部Lua脚本就对应了它的两大特性之一的配置性,那么另一大特性如何来体现呢?这就要说我们今天的 ...
- 一篇文章读懂JSON
什么是json? W3C JSON定义修改版: JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation) JSON 是轻量级的文本数据交换格式,并不是 ...
- 基于jeesit下的工作流开发步骤
首先jeesit是开源的OA系统,采用的框架是springMVC和mybatis,采用shiro安全验证. 1.新建流程所属表: 在数据库新建所需工作流的表之后,登录jeesit系统,在“代码生成”- ...
- ubuntu14.04安装gradle
一.下载gradle $ wget https:////services.gradle.org/distributions/gradle-3.5.1-all.zip $ sudo unzip grad ...
- LeetCode Excel Sheet Column Number 表列数
题意:天啊!我竟然看不懂题意,还去翻别人的代码才懂!给定一个字符串,求该字符串二十六进制的总值. 思路:'A'~'Z'就是1到26,"AA"=26+1=27,"BA&qu ...
- POJ 3050 Hopscotch(dfs,stl)
用stack保存数字,set判重.dfs一遍就好.(或者编码成int,快排+unique #include<cstdio> #include<iostream> #includ ...
- 【BZOJ2809】[APIO2012] dispatching(左偏树例题)
点此看题面 大致题意: 有\(N\)名忍者,每名忍者有三个属性:上司\(B_i\),薪水\(C_i\)和领导力\(L_i\).你要选择一个忍者作为管理者,然后在所有被他管理的忍者中选择若干名忍者,使薪 ...
- 在PHP中读取二进制文件
很多时候,数据并不是用文本的方式保存的,这就需要将二进制数据读取出来,还原成我们需要的格式.PHP在二进制处理方面也提供了强大的支持. 任务 下面以读取并分析一个PNG图像的文件头为例,讲解如何使用P ...
- 为什么L1稀疏,L2平滑?
使用机器学习方法解决实际问题时,我们通常要用L1或L2范数做正则化(regularization),从而限制权值大小,减少过拟合风险.特别是在使用梯度下降来做目标函数优化时,很常见的说法是, L1正 ...