(本来准备划水,结果被垃圾题艹翻了……)

T2题意:

定义一个数$x$的数字根$S(x)$为:将其各位数字相加得到一个新数,再将新数的数字和相加直到得到一个个位数,就是该数的数字根。

例如:$S(38)=S(3+8=11)=S(1+1=2)=2$

现在需要求数字根为$x$的从小到大第$k$个数。

$1\leq x\leq 9,k\leq 10^{12}$。

题解:

注意到数字和相加不会改变x对9取余的值。

那么可以得到:数字根为$x$的数就是满足模$9$的值为$x$的数。

特别地,数字根为$9$的数满足模$9$的值为$0$。

然后一行就可以了。

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std;
#define MAXN 100005
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long inline ll read(){
ll x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
} int main(){
ll N=read();
for(ll i=;i<=N;i++){
ll k=read(),x=read();
cout<<x+(k-)*<<endl;
}
return ;
}

T4题意:

定义一个$n$次矩阵$A$的$x$次压缩矩阵$B$为:对于任意$i,j$满足$A(i,j)=B(\lceil i/x \rceil,\lceil j/x \rceil)$。

显然对于某些$x$是不存在$x$次压缩矩阵的。

现在给定一个$01$矩阵$A$,求最大的满足$x|n$的能压缩的$x$。

$n\leq 5200$。

题解:

发现压缩的过程就相当于把原矩阵$A$分成若干个$x\times x$的小矩阵,若每个小矩阵内数均相同则$x$次压缩是可行的。

那么暴力算法就是枚举每个$x$再进行$O(n^2)$枚举判断可行性。

考虑优化,枚举$k$的过程不太好优化,我们需要一个快速的办法判断一个小矩阵中的数是否相同。

由于数只有$01$,可以维护二维前缀和,若这个小矩阵内数的和不等于$0$或者$x\times x$则肯定不相同。

时间复杂度为$O(\sum \frac{n^2}{x^2})=O(n^2\times \sum \frac{1}{x^2})=O(n^2)$。

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std;
#define MAXN 5205
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long inline int read(){
int x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
} int N,mp[MAXN][MAXN],sum[MAXN][MAXN];
char str[MAXN]; inline int gets(int x,int y,int xx,int yy){
return sum[xx][yy]-sum[xx][y]-sum[x][yy]+sum[x][y];
} bool check(int x){
for(int i=;i<=N;i+=x){
for(int j=;j<=N;j+=x){
if(gets(i-,j-,i+x-,j+x-)!= && gets(i-,j-,i+x-,j+x-)!=x*x)
return ;
}
}
return ;
} int chg(char ch){
if(isdigit(ch)) return ch-'';
else return ch-'A'+;
} int main(){
N=read();
for(int i=;i<=N;i++){
scanf("%s",str);
for(int j=;j<=N;j+=){
int tp=chg(str[j/]);
for(int k=;k<;k++)
mp[i][j+k]=(bool)(tp&(<<(-k-)));
}
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
sum[i][j]=sum[i][j-]+sum[i-][j]-sum[i-][j-]+mp[i][j];
for(int x=N;x>=;x--){
if(N%x) continue;
if(check(x)){
printf("%d\n",x);
return ;
}
}
return ;
}

T5题意:

给定一个长度为$n$的$01$串$s$,你可以进行任意次操作:

每次操作选取一段连续且相等的串$str$,记其长度为$k(1\leq k \leq n)$。

将这段串删除并将它右边的串接到左边,同时获得$A_k$的价值。

求将整个串删除为空串所能获得的最大价值。

$n\leq 100$。

题解:

这题当时触及到我的知识盲区了……(菜是原罪)考完才学了一下。

“区间消消乐”问题可以算作一种单独的$dp$模型,状态一般是

设$dp(i,j,k)$表示处理子串$[i,j]$,后面带上连续$k$个与$s_j$相同的字符所能获得的最大价值。

那么每种状态都有如下两种转移过来的方式:

  • 消后面那段颜色相同的。$dp(i,j,k)=dp(i,j-1,0)+A_k+1$
  • 枚举中间的某个断点$mid$,保证$s_{mid}=s_{j}$,此时可以把$[mid+1,j-1]$一段消去,后面接出更长的一段。$dp(i,j,k)=dp(i,mid,k+1)+dp(mid+1,j-1,0)$

时间复杂度$O(n^4)$。

这里我个人想再说细一点(因为思维太弱跳不了那么远QAQ):如何想到这个非常规的转移方程?

注意:以下讨论均是对于子区间[i,j]的处理。

如果这道题没有“删除后将右边接到左边”这句话,那么转移方程并不复杂:

$dp(i,j)=max\{dp(i,j),dp(i,k-1)+A_{j-k+1}\}$,其中$s_k=s_k+1=\cdots=s_j$。

但现在多了这句话,就要考虑怎么在转移时做出“拼接”这种骚操作来。

看上去有一个显而易见的暴力:枚举删除的区间(两端而不是一端)暴力转移。

此时状态大概是$dp(i,j,str)$表示区间$[i,j]$后面连着一段$str$。

由于思维量不大,所以这个方法的复杂度不用算也知道……

那么观察一下这个方法:记录后面连着一段的思想貌似可行,但真的有必要记录$str$吗?

现在我们状态中的str还是需要暴力处理,多这一维没有起到实质性的作用。

回到题目,消除任意一段str时,每一步操作都是消除一段连续字符。

反过来说,也就是用若干段连续字符必然能拼出任意的str。

那么我们为什么不能把状态里的str改成数字k,表示后面连着一段长度为k的连续字符呢?

Nice!我们发现用改完后的状态能够表示出原来的所有状态,这说明这个思路是可做的。

此时的状态为$dp(i,j,k,0/1)$表示$[i,j]$后面连着$k$个$0/1$。

我们还可以把$j$右移一位以略去第四维而将定义改成连着$k$个与$s_j$相同的字符。

无论哪种状态都能够通过本题了。

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std;
#define MAXN 105
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long inline ll read(){
ll x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
} ll dp[MAXN][MAXN][MAXN];
ll N,A[MAXN];
char str[MAXN]; int main(){
N=read();
scanf("%s",str+);
for(ll i=;i<=N;i++)
A[i]=read();
for(ll i=;i<=N;i++)
for(ll k=;k<=N;k++)
dp[i][i][k]=A[k+];
for(ll l=;l<=N;l++)
for(ll i=;i<=N-l+;i++){
ll j=i+l-;
for(ll k=;k<=N;k++){
dp[i][j][k]=dp[i][j-][]+A[k+];
for(ll l=i;l<j;l++)
if(str[l]==str[j])
  dp[i][j][k]=max(dp[i][j][k],dp[i][l][k+]+dp[l+][j-][]);
}
}
printf("%I64d\n",dp[][N][]);
return ;
}

【考试记录】Educational Codeforces Round 59 (Rated for Div. 2)的更多相关文章

  1. Educational Codeforces Round 59 (Rated for Div. 2) DE题解

    Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...

  2. Educational Codeforces Round 59 (Rated for Div. 2) E 区间dp + 状态定义 + dp预处理(分步dp)

    https://codeforces.com/contest/1107/problem/E 题意 给出01字符串s(n<=100),相邻且相同的字符可以同时消去,一次性消去i个字符的分数是\(a ...

  3. C. Brutality Educational Codeforces Round 59 (Rated for Div. 2) 贪心+思维

    C. Brutality time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  4. Educational Codeforces Round 59 (Rated for Div. 2)

    熬夜爆肝,智商急剧下降 坐标UTC+8晚上23:35开始 晚上脑袋转的慢,非常慢 T1上来先做还花了好几分钟 T2本来是有式子的我TM写数位DP写炸了然后才发现是有公式 T3英语不好,一开始题意没读懂 ...

  5. Educational Codeforces Round 59 (Rated for Div. 2) (前四题)

    A. Digits Sequence Dividing(英文速读) 练习英语速读的题,我还上来昏迷一次....只要长度大于2那么一定可以等于2那么前面大于后面就行其他no 大于2的时候分成前面1个剩下 ...

  6. Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code

    Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...

  7. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  8. Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)

    这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...

  9. Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest

    Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest(dp+线段树) 题目链接 题意: 给定3个人互不相同的多个数字,可以 ...

随机推荐

  1. 让loadrunner走下神坛(全)

    作者: sunshinelius(转载请注明作者) Loadrunner无疑是一个强大有力的压力测试工具.它的脚本可以录制生成,自动关联:测试场景可以面向指标,多方监控:测试结果图表显示,拆分组合.相 ...

  2. 线上cpu100%问题快速定位

    问题描述:服务器上部署了多个tomcat,即垂直切分的Web站点,记忆多个Java微服务,突然收到运维的cpu异常告警. 步骤一:找到最耗cpu的进程 工具:top 方法: 执行top -c,显示进程 ...

  3. linux应用之tomcat安装(centos)

    安装方式:源码安装 软件:apache-tomcat-7.0.29.tar.gz下载地址:http://tomcat.apache.org/download-70.cgi 安装前提 系统必须已经安装配 ...

  4. OP趋势系统

    经过3年多时间的摸索,经历过熊市牛市的历练,终于完成坚持已久的OP趋势系统的实践,接下来,我将在股灾后,每天都分享OP趋势系统的信号,可以很负责任的说,经过10年历史数据的测试,加上3年的实盘,更加坚 ...

  5. 【Shell】基础正则表示法及grep用法

    ——<鸟哥的私房菜> 正规表示法就是处理字串的方法,他是以行为单位来进行字串的处理行为:正规表示法透过一些特殊符号的辅助,可以让使用者轻易的达到『搜寻/删除/取代』某特定字串的处理程序:只 ...

  6. Codeforces Gym 101190 NEERC 16 .D Delight for a Cat (上下界的费用流)

    ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打隔膜 ,因此一个小时内他只能选择睡觉或者打隔膜,当然他也必须选择睡觉或打隔膜,对于每一个小时,他选择睡 ...

  7. 51 nod 1522 上下序列——序列dp

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1522 很好的思想.考虑从小到大一对一对填数,这样也能对它的大小限制 ...

  8. AR/VR-VR:VR

    ylbtech-AR/VR-VR:VR 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的.交互式的三维动态视景和实体行为的系统仿真使用户沉浸 ...

  9. JavaScript:Map使用

    定义Map /** * Map * */ function Map() { /** 存放键的数组(遍历用到) */ this.keys = new Array(); /** 存放数据 */ this. ...

  10. Behave + Selenium(Python) 二

    介绍feature, py文件和之间关系: example01.feature文件包括5行: Feature行: 介绍这个feature用来干什么的: Scenario行:介绍这个scenario用来 ...