题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157

题解:

  给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点)。

题解:

  先用邻接矩阵存图。

  假设k = 2,那么从i到j的方法数 = ∑ way[i][x] * way[x][j] (0<=x<n && x!=i && x!=j)

  诶?快看,那是矩阵乘法!

  

  设邻接矩阵为A,若i到j有边则val[i][j] = 1。

  k = 2时答案矩阵ans是A^2,答案就是ans.val[i][j]。

  那k任意时,答案矩阵就是A^k,答案为ans.val[i][j]。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_L 25
#define MOD 1000 using namespace std; struct Mat
{
int n;
int m;
int val[MAX_L][MAX_L];
Mat()
{
n=;
m=;
memset(val,,sizeof(val));
}
}; int n,m,t;
int a,b,k; Mat make_unit(int n)
{
Mat mat;
mat.n=n;
mat.m=n;
for(int i=;i<n;i++)
{
mat.val[i][i]=;
}
return mat;
} Mat mul_mat(const Mat &a,const Mat &b)
{
Mat c;
if(a.m!=b.n)
{
cout<<"Error: mul_mat"<<endl;
return c;
}
c.n=a.n;
c.m=b.m;
for(int i=;i<a.n;i++)
{
for(int j=;j<b.m;j++)
{
for(int k=;k<a.m;k++)
{
c.val[i][j]+=a.val[i][k]*b.val[k][j];
c.val[i][j]%=MOD;
}
}
}
return c;
} Mat quick_pow_mat(Mat mat,int k)
{
Mat ans;
if(mat.n!=mat.m)
{
cout<<"Error: quick_pow_mat"<<endl;
return ans;
}
ans=make_unit(mat.n);
while(k)
{
if(k&)
{
ans=mul_mat(ans,mat);
}
mat=mul_mat(mat,mat);
k>>=;
}
return ans;
} int main()
{
while(cin>>n>>m)
{
if(n== && m==) break;
Mat start;
start.n=n;
start.m=n;
for(int i=;i<m;i++)
{
cin>>a>>b;
start.val[a][b]=;
}
cin>>t;
for(int i=;i<t;i++)
{
cin>>a>>b>>k;
Mat ans=quick_pow_mat(start,k);
cout<<ans.val[a][b]<<endl;
}
}
}

HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】的更多相关文章

  1. HDU 2157 How many ways?? (邻接矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意 : 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值   从这道题 ...

  2. hdu 2157 How many ways_ 矩阵快速幂

    题意:略 直接矩阵乘法就行了 #include <iostream> #include<cstdio> #include<cstring> using namesp ...

  3. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  4. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  5. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  6. HDU - 4990 Reading comprehension 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...

  7. HDU 1005 Number Sequence:矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...

  8. HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )

    链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...

  9. hdu 1575 Tr A(矩阵快速幂)

    今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...

随机推荐

  1. 客户推广微信小程序的几种方法如下

    一.店面二维码推广 1.店铺门口张贴 2.餐桌.柜台张贴 3.展架.海报宣传展示 二.结合促销活动,宣传单页上印小程序二维码线下派发 三.餐厅送餐时附带点餐小卡片,印小程序二维码 四.首次扫码立送积分 ...

  2. C 递归 递归指的是在函数的定义中

    C 递归 递归指的是在函数的定义中使用函数自身的方法. 举个例子:从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事呢!故事是什么呢?"从前有座山,山里有座庙,庙里有个老和尚,正在给 ...

  3. Codeforces Round #243 (Div. 2)——Sereja and Table

    看这个问题之前,能够先看看这个论文<一类算法复合的方法>,说白了就是分类讨论,可是这个思想非常重要 题目链接 题意: 首先给出联通块的定义:对于相邻(上下和左右)的同样的数字视为一个联通块 ...

  4. UTF-8 可变编码格式

    转自:http://blog.csdn.net/swedenfeng/article/details/53467720   UTF-8 是一种可变编码格式,长度从一个字节到四个字节,可根据UTF-8字 ...

  5. CSS环绕球体的旋转文字-3D效果

    代码地址如下:http://www.demodashi.com/demo/12482.html 项目文件结构截图 只需要一个html文件既可: 项目截图: 代码实现原理: 该示例的实现过程很简单,主要 ...

  6. iOS开发之解析XML格式数据

    XML格式的数据是一种数据的传输格式.因为它方便编写.结构清晰,所以深受程序猿的喜爱,非常多人都喜欢使用XML格式数据传输或者作为程序的配置信息. 如今我将来实如今iOS中解析XML格式数据,语言使用 ...

  7. 再说java final变量

    http://blog.csdn.net/axman/article/details/1460544 从jdk1.0到今天,JAVA技术经过十余年的发展,技术上已经发生了巨大的变化.但final变量的 ...

  8. 数据结构(Java语言)——Stack简单实现

    栈是限制插入和删除仅仅能在一个位置上进行的表.该位置是表的末端,叫做栈的顶top.对栈的基本操作有进栈push和出栈pop,前者相当于插入.后者这是删除最后插入的元素. 栈有时又叫先进先出FIFO表. ...

  9. 一份还热乎的蚂蚁面经(已拿Offer)!附答案!!

    本文来自我的知识星球的球友投稿,他在最近的校招中拿到了蚂蚁金服的实习生Offer,整体思路和面试题目由作者--泽林提供,部分答案由Hollis整理自知识星球<Hollis和他的朋友们>中「 ...

  10. Linux U盘只读解决方法

    Linux Fat的U盘只读,这个问题经常出现,原因大家都说了是U盘的错误,出现这种情况后,一般的解决方案是 mount | grep <U盘的标签> # 找到你的U盘的对应的设备名称,如 ...