P3045 [USACO12FEB]牛券Cow Coupons

    • 71通过
    • 248提交
  • 题目提供者洛谷OnlineJudge
  • 标签USACO2012云端
  • 难度提高+/省选-
  • 时空限制1s / 128MB

提交  讨论  题解

最新讨论更多讨论

  • 86分求救

题目描述

Farmer John needs new cows! There are N cows for sale (1 <= N <= 50,000), and FJ has to spend no more than his budget of M units of money (1 <= M <= 10^14). Cow i costs P_i money (1 <= P_i <= 10^9), but FJ has K coupons (1 <= K <= N), and when he uses a coupon on cow i, the cow costs C_i instead (1 <= C_i <= P_i). FJ can only use one coupon per cow, of course.

What is the maximum number of cows FJ can afford?

FJ准备买一些新奶牛,市场上有N头奶牛(1<=N<=50000),第i头奶牛价格为Pi(1<=Pi<=10^9)。FJ有K张优惠券,使用优惠券购买第i头奶牛时价格会降为Ci(1<=Ci<=Pi),每头奶牛只能使用一次优惠券。FJ想知道花不超过M(1<=M<=10^14)的钱最多可以买多少奶牛?

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, K, and M.

  • Lines 2..N+1: Line i+1 contains two integers: P_i and C_i.

输出格式:

  • Line 1: A single integer, the maximum number of cows FJ can afford.

输入输出样例

输入样例#1:

4 1 7
3 2
2 2
8 1
4 3
输出样例#1:

3

说明

FJ has 4 cows, 1 coupon, and a budget of 7.

FJ uses the coupon on cow 3 and buys cows 1, 2, and 3, for a total cost of 3 + 2 + 1 = 6.

分析:其实很容易发现这就是一道背包题,对于每头牛我们都有用与不用优惠券两种选择,然而会发现,这个m不是一般的大,所以不能用dp.dp和贪心是差不多的,考虑到dp不行,试试贪心。因为我们的目标是要使买的牛最多,也就是花的钱最少,于是我当时想了一种贪心:我们可以取前k个用优惠券的价格(从小到大排序),然后和不排序的放在一起排序一下,然后遍历求解.这样的话有一个问题:我们已经假定前k个用优惠券的牛用优惠券,然而有时候不用优惠券比用优惠券要好,那就是用不用价格都相等的情况,所以我们不再取前k个,我们把每头牛拆成2头牛,一头用优惠券,一头不用,然后排序求解即可.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <functional> using namespace std; int n, k,p[],c[],vis[],ans;
long long m; struct node
{
int id, use, money;
}e[]; bool cmp(node a, node b)
{
if (a.money == b.money)
return a.use < b.use;
return a.money < b.money;
} int main()
{
scanf("%d%d%lld", &n, &k, &m);
for (int i = ; i <= n; i++)
{
scanf("%d%d", &p[i], &c[i]);
e[i * - ].id = i;
e[i * - ].use = ;
e[i * - ].money = c[i]; e[i * ].id = i;
e[i * ].use = ;
e[i * ].money = p[i];
}
sort(e + , e + n * + , cmp);
for (int i = ; i <= n * ; i++)
{
if (vis[e[i].id])
continue;
if (e[i].use && k <= )
continue;
if (m <= )
break;
if (m >= e[i].money)
{
vis[e[i].id] = ;
ans++;
m -= e[i].money;
if (e[i].use)
k--;
}
} printf("%d", ans);
return ;
}

洛谷P3045 [USACO12FEB]牛券Cow Coupons的更多相关文章

  1. P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 贪心题.先选中 \(c_i\) 最小的 \(k\) 头牛,如果这样就超过 \(m\) ,直接退出,输出答案.否则考虑把后面的牛依次加入, ...

  2. [USACO12FEB]牛券Cow Coupons(堆,贪心)

    [USACO12FEB]牛券Cow Coupons(堆,贪心) 题目描述 Farmer John needs new cows! There are N cows for sale (1 <= ...

  3. [USACO12FEB]牛券Cow Coupons

    嘟嘟嘟 这其实是一道贪心题,而不是dp. 首先我们贪心的取有优惠券中价值最小的,并把这些东西都放在优先队列里,然后看[k + 1, n]中,有些东西使用了优惠券减的价钱是否比[1, k]中用了优惠券的 ...

  4. LuoguP3045牛券Cow Coupons

    LuoguP3045 [USACO12FEB]牛券Cow Coupons 果然我贪心能力还是太差了 ZR讲过的原题我回来对做法没有一丁点印象 有时候有这样一种题目 每个数有两种不同的价值 你可以选择价 ...

  5. 洛谷P3048 [USACO12FEB]牛的IDCow IDs

    P3048 [USACO12FEB]牛的IDCow IDs 12通过 67提交 题目提供者lin_toto 标签USACO2012 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 ...

  6. 洛谷——P2952 [USACO09OPEN]牛线Cow Line

    P2952 [USACO09OPEN]牛线Cow Line 题目描述 Farmer John's N cows (conveniently numbered 1..N) are forming a l ...

  7. 洛谷 P3048 [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  8. 洛谷 P3014 [USACO11FEB]牛线Cow Line

    P3014 [USACO11FEB]牛线Cow Line 题目背景 征求翻译.如果你能提供翻译或者题意简述,请直接发讨论,感谢你的贡献. 题目描述 The N (1 <= N <= 20) ...

  9. 洛谷 P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver

    P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver 题目描述 The cows are out exercising their hooves again! There are N ...

随机推荐

  1. OO第四单元总结

    单元架构设计 本单元OO作业主要涉及两个过程,即先根据输入的elements数组建立UML存储模型,而后基于这个模型实现一系列查询判断功能.汲取上单元的经验,建模过程中模型数据容器的选择依据要求实现的 ...

  2. cin对象的一些常用方法使用总结

    >> 最初定义的是右移,当但是出现在 cin >>中的时候这个符号被重载了,变成了一个流操作,在用户通过键盘输入信息的时候,所有内容都会先直接存储在一个叫输入缓冲区的的地方,c ...

  3. arcgis engine计算点到线的最短距离

    IProximityOperator接口用于获取两个几何图形的距离,以及给定一个Point,求另一个几何图形上离离给定点最近的点.IProximityOperator接口的主要方法有:QueryNea ...

  4. IOS ViewTable

    // //  ViewController.swift //  UITableView // //  Created by lanou on 16/11/7. //  Copyright (c) 20 ...

  5. python 进度条 打印

  6. 【Python学习之七】面向对象高级编程——使用@property

    参考来自廖雪峰Python教程:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/ ...

  7. notification 使用的基本方法

    当某个应用程序希望向用户发出一些提示信息,而应用程序又不在前台,可以借助Notification来实现.发出一条通知后,手机最上方额通知栏会显示一个图标,下来状态栏以后可以看到详细内容. 一.通知的基 ...

  8. POJ1426-Find The Multiple(搜索)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42035   Accepted: 176 ...

  9. 算法训练 Eurodiffusion

    Eurodiffusion /***********并未完全AC***********/ #include<iostream> #include<algorithm> #inc ...

  10. PAT basic 1087

    1087 有多少不同的值 (20 分) 当自然数 n 依次取 1.2.3.…….N 时,算式 ⌊n/2⌋+⌊n/3⌋+⌊n/5⌋ 有多少个不同的值?(注:⌊x⌋ 为取整函数,表示不超过 x 的最大自然 ...