传送门

好吧我数学差的好像不是一点半点……

题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$

我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p-1)}(mod\ p)$

然后组合数可以直接用Lucas搞

那么就做完啦

然而$p-1$并不是质数orz,费马小定理不能用

那么我们考虑把$p-1$分解质数,$999911658=2*3*4679*35617$

我们先用Lucas定理分别算出对这四个数取模的答案,然后得到四个线性同余方程

然后直接用中国剩余定理解出答案就好了(然而我并不会中国剩余定理orz)

 //minamoto
#include<cstdio>
#define ll long long
using namespace std;
const int mod=;
ll n,G,val,fac[],a[],b[]={,,,};
inline ll ksm(ll x,ll y,ll p){
ll res=;
while(y){
if(y&) res=res*x%p;
x=x*x%p,y>>=;
}
return res;
}
inline void init(ll p){
fac[]=;
for(int i=;i<=p;++i)
fac[i]=fac[i-]*i%p;
}
inline ll C(ll n,ll m,ll p){
if(n<m) return ;
return fac[n]*ksm(fac[m],p-,p)%p*ksm(fac[n-m],p-,p)%p;
}
ll Lucas(ll n,ll m,ll p){
if(n<m) return ;if(!n) return ;
return Lucas(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
inline void CRT(){
for(int i=;i<;++i)
val=(val+a[i]*(mod/b[i])%mod*ksm(mod/b[i],b[i]-,b[i]))%mod;
}
int main(){
scanf("%lld%lld",&n,&G);
if(G%(mod+)==) return puts(""),;
for(int k=;k<;++k){
init(b[k]);
for(ll i=;i*i<=n;++i)
if(n%i==){
a[k]=(a[k]+Lucas(n,i,b[k]))%b[k];
if(i*i!=n) a[k]=(a[k]+Lucas(n,n/i,b[k]))%b[k];
}
}
CRT();
printf("%lld\n",ksm(G,val,mod+));
return ;
}

洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)的更多相关文章

  1. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  2. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

  3. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  4. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  5. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

  6. 洛谷P2480 [SDOI2010]古代猪文

    要求(图是盗来的QAQ) 首先用欧拉定理把幂模一下,直接就是MOD-1了 然后发现MOD-1可以分解为2,3,4679,35617,都是质数,可以直接用Lucas定理 然后用中国剩余定理合并一下即可 ...

  7. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  8. 【洛谷P2480】古代猪文

    题目大意:求 \[ G^{\sum\limits_{d|N}\binom{n}{k}} mod\ \ 999911659 \] 题解:卢卡斯定理+中国剩余定理 利用卢卡斯定理求出指数和式对各个素模数的 ...

  9. [SDOI2010] 古代猪文 (快速幂+中国剩余定理+欧拉定理+卢卡斯定理) 解题报告

    题目链接:https://www.luogu.org/problemnew/show/P2480 题目背景 “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色 ...

随机推荐

  1. 基于struts2的学生报道管理系统(附github源码地址)

    本项目参考了<java web轻量级开发全体验>,加入了对mysql的支持. 一.基本业务功能 通过struts2框架,结合mysql数据库构建一个学生报到管理系统,来模拟学生报到登记的过 ...

  2. tomcat servlet JSP common gateway interface 公共网关接口

    Tomcat主要充当servlet/JSP容器,不过它却有大量的功能可以与传统的Web服务器相媲美,对公共网关接口(Common Gateway Interface)的支持就是其中之一. 传统的Web ...

  3. mongodb学习之:mongo安装以及远程访问

    在linux下通过apt-get install mongo的方式一键式安装mongo 安装后mongo的配置文件位于/etc/mongodb.conf. 里面有mongo的各项配置,文件内容如下:重 ...

  4. NSString和NSMutableNSString的基本用法

    // // main.m // NSString /** NSString 1.NSString 是一个不可以变的字符串对象 2.NSMutableString是一个可变字符串. 下面代码为字符串的: ...

  5. Could not get unknown property 'packageForR' for task ':app:processDebugReso

    butterknife 注解框架的问题 删除项目中的有关butterknife 的 apply plgin.classpath 字段 把注解框架改为最新版本 implementation 'com.j ...

  6. Docker容器的网络连接:

    yw1989@ubuntu:~$ ifconfig docker0 Link encap:Ethernet HWaddr 02:42:97:61:42:9f inet addr:172.17.0.1 ...

  7. Code Review 规范

    CodeReview规范 CodeReivew 标准 通用原则 提交 PR 的代码必须保证自测通过 只 review 代码规范.业务逻辑,不 review 架构设计(那是写代码前应该做的事情) 干掉重 ...

  8. vue路由总结

    vue-router, vue自带的路由,下面是一些简单的操作说明: 一.安装 1.cnpm install vue-router --save  命令进行安装 2.在main.js或者使用vue-r ...

  9. 如何查看智能手机的IP地址

      1.  外网IP IP地址可简单分为两类.外网IP或称公网IP是用来在Internet上唯一标识你的设备的.如果你通过GPRS或者3G技术接入互联网的话(通过运营商网络),那么你也可以通过下面的方 ...

  10. AndroidManifest中的Intent-filter标签

    经过测试,intent-filter标签中的: 1. <action android:name="android.intent.action.MAIN" /> 代表这是 ...