Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 8599    Accepted Submission(s): 4005

Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 解题报告
EK模板,不多说。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 220
#define M 220
using namespace std;
int n,m,edge[N][N],flow,a[N],p[N];
queue<int>Q;
void ek()
{
while(1)
{
while(!Q.empty())
Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
Q.push(1);
a[1]=inf;
p[1]=1;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n])break;
}
if(!a[n])break;
for(int u=n;u!=1;u=p[u])
{
edge[p[u]][u]-=a[n];
edge[u][p[u]]+=a[n];
}
flow+=a[n];
}
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
ek();
printf("%d\n",flow);
}
}

又学了Dinic算法。

。。

(基于邻接矩阵的)。前向星不知道怎么处理反向弧。。。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 200
#define M 200
using namespace std;
int edge[N][N],flow,l[N],n,m;
int bfs()
{
memset(l,-1,sizeof(l));
queue<int>Q;
l[1]=0;
Q.push(1);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(edge[u][v]&&l[v]==-1)
{
l[v]=l[u]+1;
Q.push(v);
}
}
}
if(l[n]>0)
return 1;
else return 0;
}
int dfs(int x,int f)
{
if(x==n)return f;
int a;
for(int i=1;i<=n;i++)
{
if(edge[x][i]&&(l[i]==l[x]+1)&&(a=dfs(i,min(f,edge[x][i]))))
{
edge[x][i]-=a;
edge[i][x]+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
int a=0;
flow=0;
while(bfs())
while(a=dfs(1,inf))
flow+=a;
printf("%d\n",flow);
}
return 0;
}

最终觉醒了,之前看了一串非递归的前向星dinic,,。老认为不正确。,,换了一种思路,写成递归调用dfs和邻接表一样,对于处理反向弧加流的话在建边的时候处理,建边一次建两条,正向和反向,这样就知道。反向弧在哪里了,,。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 300
#define M 30000
#define inf 99999999
using namespace std;
struct node
{
int u,v,w,r,next;
}edge[M]; int n,m,head[N],l[N],cnt;
void add(int u,int v,int w)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
edge[cnt].r=cnt+1;
head[u]=cnt++;
edge[cnt].u=v;
edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
edge[cnt].r=cnt-1;
head[v]=cnt++;
}
int bfs()
{
queue<int >Q;
while(!Q.empty())
Q.pop();
Q.push(1);
memset(l,-1,sizeof(l));
l[1]=0;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==-1)
{
l[edge[i].v]=l[u]+1;
Q.push(edge[i].v);
}
}
}
if(l[n]>0)return 1;
else return 0;
}
int dfs(int x,int f)
{
int i,a;
if(x==n)return f;
for(i=head[x];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==l[x]+1&&(a=dfs(edge[i].v,min(f,edge[i].w))))
{
edge[i].w-=a;
edge[edge[i].r].w+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(cin>>m>>n)
{
memset(head,-1,sizeof(head));
memset(edge,0,sizeof(edge));
cnt=0;
for(i=0;i<m;i++)
{
cin>>u>>v>>w;
add(u,v,w);
}
int ans=0,a;
while(bfs())
while(a=dfs(1,inf))
ans+=a;
cout<<ans<<endl;
}
}


HDU1532_Drainage Ditches(网络流/EK模板/Dinic模板(邻接矩阵/前向星))的更多相关文章

  1. poj-1459-最大流dinic+链式前向星-isap+bfs+stack

    title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...

  2. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  3. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  4. zzuli 2131 Can Win dinic+链式前向星(难点:抽象出网络模型+建边)

    2131: Can Win Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 431  Solved: 50 SubmitStatusWeb Board ...

  5. 存图方式---邻接表&邻接矩阵&前向星

    基于vector存图 struct Edge { int u, v, w; Edge(){} Edge(int u, int v, int w):u(u), v(v), w(w){} }; vecto ...

  6. 网络流--最大流dinic模板

    标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 #include<stdio.h> //差不多要加这么些头文件 #includ ...

  7. 网络流--最大流--Dinic模板矩阵版(当前弧优化+非当前弧优化)

    //非当前弧优化版 #include <iostream> #include <cstdio> #include <math.h> #include <cst ...

  8. 网络流-最大流 Dinic模板

    #include <bits/stdc++.h> using namespace std; #define MP make_pair #define PB push_back #defin ...

  9. Drainage Ditches(网络流(EK算法))

    计算最大流,EK算法模板题. #include <stdio.h> #include <string.h> #include <queue> using names ...

随机推荐

  1. 【转】javascript操作Select标记中options集合

    先来看看options集合的这几个方法:options.add(option)方法向集合里添加一项option对象:options.remove(index)方法移除options集合中的指定项:op ...

  2. 在springmvc中使用@PathVariable时,应该注意点什么?

    导读:近来在做库存调剂系统时,我从前台到后台的传值方式,主要包括:1个,用@PathVariable或者@RequestParam从路径取:大于一个,用于更新或者添加操作的,我用的是表单实体传到后台: ...

  3. Python杂技

    py转exe文件 用 pyinstaller,可以把所有文件打包成一个单独的exe文件 win10X64 =>pip install pyinstaller pyinstaller [参数] [ ...

  4. 【Luogu】P3806点分治模板(点分治)

    题目链接 wc听不懂lca讲的高等数学专场(一个字都听不懂),然后就自学了点分治. 点分治就是我先处理完跟根有关的东西,然后把根标记掉,把原树拆成若干个联通块,然后分别对每个联通块(每个小树)搞一模一 ...

  5. BZOJ3993 [SDOI2015]星际战争 【二分 + 网络流】

    题目 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战.在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值减少到 ...

  6. NOIP2017赛前模拟1:总结

    题目: 1.造盒子 题目描述 企鹅豆豆收到了面积为 K 的一块橡皮泥.但是他没有合适的盒子来装下这个橡皮泥.所以他打算造一个盒子. 制造台是有方形网格的平台,每个小正方形边长为 1 .现在豆豆有两类木 ...

  7. 解决 Springboot中Interceptor拦截器中依赖注入失败

    问题: 在Springboot拦截器Interceptor中使用@Resource依赖注入时,发现运行的时候被注解的对象居然是null,没被注入进去 原配置为: @Configurationpubli ...

  8. lucas定理 +证明 学习笔记

    lucas定理 p为素数 \[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\] 左边一项直接求,右边可递归处理,不包 ...

  9. 【BZOJ4472】salesman(树形DP)

    题意: 给定一颗有点权的树,每个树上的节点最多能走到lim[u]次,求一条路径,使路径上的点权和最大,每个节点上的点权如果走了多次只能算一次.还要求方案是否唯一. 思路:每个点只能取lim[u]-1个 ...

  10. andriod多线程

    用ThreadHandle可以实现多线程,然后再主线程更新UI 第二种就是用 AsyncTask 具体看代码 public void onClick(View v) { new DownloadIma ...