Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 8599    Accepted Submission(s): 4005

Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 解题报告
EK模板,不多说。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 220
#define M 220
using namespace std;
int n,m,edge[N][N],flow,a[N],p[N];
queue<int>Q;
void ek()
{
while(1)
{
while(!Q.empty())
Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
Q.push(1);
a[1]=inf;
p[1]=1;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n])break;
}
if(!a[n])break;
for(int u=n;u!=1;u=p[u])
{
edge[p[u]][u]-=a[n];
edge[u][p[u]]+=a[n];
}
flow+=a[n];
}
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
ek();
printf("%d\n",flow);
}
}

又学了Dinic算法。

。。

(基于邻接矩阵的)。前向星不知道怎么处理反向弧。。。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 200
#define M 200
using namespace std;
int edge[N][N],flow,l[N],n,m;
int bfs()
{
memset(l,-1,sizeof(l));
queue<int>Q;
l[1]=0;
Q.push(1);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(edge[u][v]&&l[v]==-1)
{
l[v]=l[u]+1;
Q.push(v);
}
}
}
if(l[n]>0)
return 1;
else return 0;
}
int dfs(int x,int f)
{
if(x==n)return f;
int a;
for(int i=1;i<=n;i++)
{
if(edge[x][i]&&(l[i]==l[x]+1)&&(a=dfs(i,min(f,edge[x][i]))))
{
edge[x][i]-=a;
edge[i][x]+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
int a=0;
flow=0;
while(bfs())
while(a=dfs(1,inf))
flow+=a;
printf("%d\n",flow);
}
return 0;
}

最终觉醒了,之前看了一串非递归的前向星dinic,,。老认为不正确。,,换了一种思路,写成递归调用dfs和邻接表一样,对于处理反向弧加流的话在建边的时候处理,建边一次建两条,正向和反向,这样就知道。反向弧在哪里了,,。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 300
#define M 30000
#define inf 99999999
using namespace std;
struct node
{
int u,v,w,r,next;
}edge[M]; int n,m,head[N],l[N],cnt;
void add(int u,int v,int w)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
edge[cnt].r=cnt+1;
head[u]=cnt++;
edge[cnt].u=v;
edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
edge[cnt].r=cnt-1;
head[v]=cnt++;
}
int bfs()
{
queue<int >Q;
while(!Q.empty())
Q.pop();
Q.push(1);
memset(l,-1,sizeof(l));
l[1]=0;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==-1)
{
l[edge[i].v]=l[u]+1;
Q.push(edge[i].v);
}
}
}
if(l[n]>0)return 1;
else return 0;
}
int dfs(int x,int f)
{
int i,a;
if(x==n)return f;
for(i=head[x];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==l[x]+1&&(a=dfs(edge[i].v,min(f,edge[i].w))))
{
edge[i].w-=a;
edge[edge[i].r].w+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(cin>>m>>n)
{
memset(head,-1,sizeof(head));
memset(edge,0,sizeof(edge));
cnt=0;
for(i=0;i<m;i++)
{
cin>>u>>v>>w;
add(u,v,w);
}
int ans=0,a;
while(bfs())
while(a=dfs(1,inf))
ans+=a;
cout<<ans<<endl;
}
}


HDU1532_Drainage Ditches(网络流/EK模板/Dinic模板(邻接矩阵/前向星))的更多相关文章

  1. poj-1459-最大流dinic+链式前向星-isap+bfs+stack

    title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...

  2. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  3. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  4. zzuli 2131 Can Win dinic+链式前向星(难点:抽象出网络模型+建边)

    2131: Can Win Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 431  Solved: 50 SubmitStatusWeb Board ...

  5. 存图方式---邻接表&邻接矩阵&前向星

    基于vector存图 struct Edge { int u, v, w; Edge(){} Edge(int u, int v, int w):u(u), v(v), w(w){} }; vecto ...

  6. 网络流--最大流dinic模板

    标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 #include<stdio.h> //差不多要加这么些头文件 #includ ...

  7. 网络流--最大流--Dinic模板矩阵版(当前弧优化+非当前弧优化)

    //非当前弧优化版 #include <iostream> #include <cstdio> #include <math.h> #include <cst ...

  8. 网络流-最大流 Dinic模板

    #include <bits/stdc++.h> using namespace std; #define MP make_pair #define PB push_back #defin ...

  9. Drainage Ditches(网络流(EK算法))

    计算最大流,EK算法模板题. #include <stdio.h> #include <string.h> #include <queue> using names ...

随机推荐

  1. SDOJ 3696 Tree

    描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V,E,need分别表示点数,边数和需要的白色边数. 接下来E行 每行 ...

  2. 缓存淘汰算法之LFU

    1. LFU类 1.1. LFU 1.1.1. 原理 LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频 ...

  3. Chromo开发常用插件和***工具

    地址:https://www.google.com/chrome/webstore/ ***工具:链接:http://pan.baidu.com/s/1pLakW7T 密码:2gpw Axure RP ...

  4. gcd-模板+最小公倍数

    #include<iostream> #include<cstdio> #include<algorithm> using namespace std; int G ...

  5. samba安装和配置

    windows和windows系统之间要实现文件共享是通过网络邻居实现linux和windows之间通过什么来实现文件共享呢?一.通过文件挂载(首先要制作ISO镜像文件,然后在用挂载命令)二.通过sa ...

  6. 标准C程序设计七---33

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  7. Servlet 2.4 规范之第六篇:响应

    响应对象封装了服务端返回给客户端的所有信息.在HTTP协议中,这些信息通过HTTP头和消息体传送. SRV.5.1    缓冲 出于效率考量,servlet容器可以缓冲输出数据,但这并非强制要求.常见 ...

  8. LeetCode OJ--Path Sum II **

    https://oj.leetcode.com/problems/path-sum-ii/ 树的深搜,从根到叶子,并记录符合条件的路径. 注意参数的传递,是否需要使用引用. #include < ...

  9. tableView刷新中的问题

    在开始之前先上一张效果图 相信大家都看到了“店铺优惠”这一栏,在这里假设这一栏就是单独的一个cell,当无店铺优惠的时候不可点击在有店铺优惠的时候会弹出优惠列表,选中并返回时会刷新数据,所以弹出视图采 ...

  10. Reveal.js演讲幻灯片框架

    摘要 还需学习参考的链接  https://www.tuicool.com/articles/2AFFj2j 无意中看到这个插件,很喜欢,可以作用在演讲ppt,幻灯片,用户指引上等.代码简单,易维护 ...