【BZOJ3252】攻略 DFS序+线段树(模拟费用流)
【BZOJ3252】攻略
Description
Input
Output
Sample Input
4 3 2 1 1
1 2
1 5
2 3
2 4
Sample Output
HINT
对于100%的数据,n<=200000,1<=场景价值<=2^31-1
题解:由于原题就是一个费用流,所以本题我们依旧试图模拟一下费用流的过程。
先spfa找到一条最长路,然后将这些边的正向边流量变为0,再加入反向边。。。等等,加反向边好像没啥用?
因为我们永远也不会走反向边,那么我们只需要每次贪心的选取一条最长的路径即可。具体地,我们用线段树维护DFS序,位置i的值为从根节点到i的路径长度。每次找到最长路后,将路径上所有未被访问过的点都拿出来,更新一下它子树中所有点的路径长度即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=200010;
typedef long long ll;
int n,k,cnt;
ll ans;
int p[maxn],q[maxn],to[maxn<<1],next[maxn<<1],head[maxn<<1],fa[maxn],vis[maxn],org[maxn];
int ps[maxn<<2];
ll s[maxn<<2],tag[maxn<<2],dep[maxn],v[maxn];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
void add(int a,int b)
{
to[++cnt]=b,next[cnt]=head[a],head[a]=cnt;
}
void dfs(int x)
{
p[x]=++p[0],org[p[0]]=x;
for(int i=head[x];i;i=next[i]) if(to[i]!=fa[x]) dep[to[i]]=dep[x]+v[to[i]],fa[to[i]]=x,dfs(to[i]);
q[x]=p[0];
}
void pushup(int x)
{
s[x]=max(s[lson],s[rson]);
ps[x]=(s[lson]>=s[rson])?ps[lson]:ps[rson];
}
void pushdown(int x)
{
if(tag[x]) s[lson]+=tag[x],s[rson]+=tag[x],tag[lson]+=tag[x],tag[rson]+=tag[x],tag[x]=0;
}
void build(int l,int r,int x)
{
if(l==r)
{
s[x]=dep[org[l]],ps[x]=org[l];
return ;
}
int mid=l+r>>1;
build(l,mid,lson),build(mid+1,r,rson);
pushup(x);
}
void updata(int l,int r,int x,int a,int b,int c)
{
if(a<=l&&r<=b)
{
s[x]-=c,tag[x]-=c;
return ;
}
pushdown(x);
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b,c);
if(b>mid) updata(mid+1,r,rson,a,b,c);
pushup(x);
}
int main()
{
n=rd(),k=rd();
int i,a,b,t;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
dep[1]=v[1],dfs(1);
build(1,n,1);
for(i=1;i<=k;i++)
{
t=ps[1],ans+=s[1];
while(t&&!vis[t]) vis[t]=1,updata(1,n,1,p[t],q[t],v[t]),t=fa[t];
}
printf("%lld",ans);
return 0;
}
【BZOJ3252】攻略 DFS序+线段树(模拟费用流)的更多相关文章
- bzoj3252 攻略 dfs序+线段树
题目传送门 题目大意:给出一棵树,1为根节点,每个节点都有权值,每个叶子节点都是一个游戏的结局,选择k个游戏结局,使得权值总和最大,同一个节点不会被重复计算. 思路:这道题最关键的是要想到一个性质,就 ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- 【CF280D】 k-Maximum Subsequence Sum ,线段树模拟费用流
昨天考试被教育了一波.为了学习一下\(T3\)的科技,我就找到了这个远古时期的\(cf\)题(虽然最后\(T3\)还是不会写吧\(QAQ\)) 顾名思义,这个题目其实可以建成一个费用流的模型.我们用流 ...
- [BZOJ3638 && BZOJ3272]带修区间不相交最大K子段和(线段树模拟费用流)
https://www.cnblogs.com/DaD3zZ-Beyonder/p/5634149.html k可重区间集问题有两种建图方式,可能这一种才可以被线段树优化. 换个角度看,这也是一个类似 ...
- codevs1228 (dfs序+线段树)
1228 苹果树 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在卡卡的房子外面,有一棵苹果树.每年的春天,树上总会结 ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- POJ 3321 DFS序+线段树
单点修改树中某个节点,查询子树的性质.DFS序 子树序列一定在父节点的DFS序列之内,所以可以用线段树维护. 1: /* 2: DFS序 +线段树 3: */ 4: 5: #include < ...
随机推荐
- 【CF387D】George and Interesting Graph(二分图最大匹配)
题意:给定一张n点m边没有重边的有向图,定义一个有趣图为:存在一个中心点满足以下性质: 1.除了这个中心点之外其他的点都要满足存在两个出度和两个入度. 2.中心 u 需要对任意顶点 v(包括自己)有一 ...
- linux-3.2.36内核启动1-启动参数(arm平台 启动参数的获取和处理,分析setup_arch)【转】
转自:http://blog.csdn.net/tommy_wxie/article/details/17093297 最近公司要求调试一个内核,启动时有问题,所以就花了一点时间看看内核启动. 看的过 ...
- linux shmget shmctl
shmgetint shmget(key_t key, size_t size, int flag);key: 标识符的规则size:共享存储段的字节数flag:读写的权限返回值:成功返回共享存储的i ...
- 系统软键盘">Android在外接物理键盘时,如何强制调用系统软键盘?
第一次写,写的不好请见谅 物理键盘映射过程: 手机/system/usr/keylayout/*.kl :内核将keyCode映射成有含义的字符串KeycodeLabels.h : framework ...
- 细说Redis监控和告警
https://blog.csdn.net/qq_27623337/article/details/53206685
- cmake ccmake
下载libqrencode源码编译过程 git clone https://github.com/fukuchi/libqrencode.git 2001 mkdir build 2002 cd ...
- Java集合——概述
Java集合——概述 摘要:本文主要介绍了几种集合类型以及有关的一些知识点. 集合类图 类图 类图说明 所有集合类都位于java.util包下.Java的集合类主要由两个接口派生而出:Collecti ...
- BZOJ1007水平可見直線 計算幾何
@[計算幾何] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于 ...
- ios 使用keychain具体方法
Dictionary 写入: if ([self.currentUserAccount length] > 0) { Keycha ...
- android TextView 设置字体大小
package com.example.yanlei.yl4; import android.graphics.Color;import android.os.Bundle;import androi ...