there

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
using namespace std;
int n, m, aa[300005], bb[300005], lim=1, tmpcnt, rev[1100005];
const double PI=acos(-1.0);
char ss[300005];
vector<int> vec;
struct Complex{
double x, y;
Complex(double xx=0.0, double yy=0.0){
x = xx;
y = yy;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
Complex operator*(double u)const{
return Complex(x*u, y*u);
}
}a[1100005], b[1100005], c[1100005];
void fft(Complex a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1;
Complex wn=Complex(cos(PI*2.0/i), opt*sin(PI*2.0/i));
for(int j=0; j<lim; j+=i){
Complex w=Complex(1.0, 0.0);
for(int k=0; k<tmp; k++){
Complex tmp1=a[j+k], tmp2=w*a[j+k+tmp];
a[j+k] = tmp1 + tmp2;
a[j+k+tmp] = tmp1 - tmp2;
w = w * wn;
}
}
}
if(opt==-1)
for(int i=0; i<lim; i++)
a[i].x /= lim;
}
int main(){
cin>>m>>n;
while(lim<=n+m) lim <<= 1, tmpcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(tmpcnt-1));
scanf("%s", ss);
for(int i=0; i<m; i++)
if(ss[i]!='*')
aa[i] = ss[i] - 'a' + 1;
scanf("%s", ss);
for(int i=0; i<n; i++)
if(ss[i]!='*')
bb[i] = ss[i] - 'a' + 1;
reverse(aa, aa+m);
for(int i=0; i<m; i++)
a[i] = Complex(aa[i]*aa[i]*aa[i], 0.0);
for(int i=0; i<n; i++)
b[i] = Complex(bb[i], 0.0);
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
c[i] = a[i] * b[i];
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for(int i=0; i<m; i++)
a[i] = Complex(aa[i]*aa[i], 0.0);
for(int i=0; i<n; i++)
b[i] = Complex(bb[i]*bb[i], 0.0);
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
c[i] = c[i] - a[i] * b[i] * 2.0;
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for(int i=0; i<m; i++)
a[i] = Complex(aa[i], 0.0);
for(int i=0; i<n; i++)
b[i] = Complex(bb[i]*bb[i]*bb[i], 0.0);
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
c[i] = c[i] + a[i] * b[i];
fft(c, -1);
for(int i=m-1; i<n; i++)
if(fabs(c[i].x)<1e-6)
vec.push_back(i-m+2);
cout<<vec.size()<<endl;
for(int i=0; i<vec.size(); i++)
printf("%d ", vec[i]);
printf("\n");
return 0;
}

luogu4173 残缺的字符串的更多相关文章

  1. Luogu4173 残缺的字符串 FFT

    传送门 考虑如何使用FFT计算两个子串是否匹配.如果字符集比较小可以把每个字符都拿出来暴力做一遍,但是字符集比较大的时候复杂度就会有问题.这个时候可以考虑匹配函数. 先考虑没有通配符的情况.将\(A\ ...

  2. BZOJ 4259: 残缺的字符串 [FFT]

    4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...

  3. 【BZOJ4259】残缺的字符串

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  4. 【BZOJ4259】残缺的字符串(FFT)

    [BZOJ4259]残缺的字符串(FFT) 题面 给定两个字符串\(|S|,|T|\),两个字符串中都带有通配符. 回答\(T\)在\(S\)中出现的次数. \(|T|,|S|<=300000\ ...

  5. 【BZOJ4259】残缺的字符串 FFT

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  6. CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串

    Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...

  7. luoguP4173 残缺的字符串 FFT

    luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...

  8. 洛谷 P4173 残缺的字符串 (FFT)

    题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...

  9. Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用

    P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...

随机推荐

  1. Log4j输出格式log4j的PatternLayout参数含义

    摘自:http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html 参数 说明 例子 %c 列出logger ...

  2. 关于死循环while(true){}或for(;;){}的总结

    关于死循环while(true){}或for(;;){}的总结 1.基本用法: while(true){     语句体; } for(;;){     语句体; } 以上情况,语句体会一直执行. 2 ...

  3. arcgis jsapi接口入门系列(9):可以同时显示多个的地图popup

    jsapi有提供popup功能,但缺点很多,例如地图上只能同时显示一个popup,popup内容有限制等 本文提供另一个方法,原理不用jsapi,在地图外用一个普通的div放在地图上面,再监听地图的鼠 ...

  4. VC中包含的头文件名不区分大小写

    VC中包含的头文件名,不区分大小写如 #include "my.h" = #include "MY.H".

  5. Intel 快速存储蓝屏

    今天电脑蓝屏,DPC Watchdog Violation 很烦.开bluescreen说是NT内核的问题 开windbg说是Intel快速存储的问题,顺手卸载快速存储 卸载前 卸载后 另外我看Int ...

  6. VS开发软winform软件的更改用户使用权限

    在使用软件的过程中,我们经常需要使用的软件拥有管理员权限,在开发的过程中,本人就遇到了应为权限不足的问题导致软件不能正常使用的状况. 在此我来记录我遇到的问题. 为开发的软件赋予管理员权限 https ...

  7. 四、filter和find函数的区别

    filter(): filter函数会返回data中为true那项的数组(即查询符合条件的数据) eg:data.filter((f)=>{ if(f[name]===item[name]){ ...

  8. angular设置反向代理

    本地调试,需要用到服务器的api,发现chrome安全问题,需要解决跨域问题.现给出解决方案: 1.增加proxy.conf.json文件 位置与package.json文件同级(可指定) 2.pac ...

  9. 《毛毛虫团队》第九次团队作业:BETA冲刺与团队项目验收

    一:实验名称:Beta冲刺与验收准备 二:实验目的与要求 (1)掌握软件黑盒测试技术: (2)学会编制软件项目总结PPT.项目验收报告: (3)掌握软件项目验收内容,验收流程. 三.实验内容与步骤 任 ...

  10. C#语言命名的9种规范

    下面介绍C#语言命名的9种规范: a) 类 [规则1-1]使用Pascal规则命名类名,即首字母要大写. [规则1-2]使用能够反映类功能的名词或名词短语命名类. [规则1-3]不要使用“I”.“C” ...