TOJ 4804: 树网的核
这个是NOIP的提高组的题
4804: 树网的核 
Total Submit: 5 Accepted:4
Description
设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。
路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。
D(v, P)=min{d(v, u), u为路径P上的结点}。
树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。
偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即
ECC(F)=max{d(v, F),v∈V}
任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。
下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。
Input
包含n行:
第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。
从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。
所给的数据都是争取的,不必检验。
Output
只有一个非负整数,为指定意义下的最小偏心距。
Sample Input
Sample Output
Hint
样例输入2
8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
样例输出2
5
Source
看起来是引入了一个新概念,其实还是图论的内容
树的直径是怎么定义的呢?树的直径是指树的最长简单路。求法: 一般采用两遍BFS :先任选一个起点BFS找到最长路的终点,再从终点进行BFS,则第二次BFS找到的最长路即为树的直径;有时候也会树形dp
求一段最长的路径,然后在整个图中的每一个点到该路径上的点的最大长度的最小值
直径最长所以偏心距一定是这两点到端点的最大距离(否则,直径就不为最长)我用floyd跑出最短路,然后在找到最长边,再去枚举这个点就好了啊
#include <stdio.h>
#include <algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=;
int d[N][N];
int main()
{
int n,s;
scanf("%d%d",&n,&s);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(i!=j)d[i][j]=inf;
for(int i=; i<n; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
d[v][u]=d[u][v]=w;
}
for(int k=; k<=n; k++)
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(d[i][k]<inf&&d[k][j]<inf)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
int ma=,l,r;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(d[i][j]!=inf&&d[i][j]>ma)
ma=d[i][j],l=i,r=j;
int ans=inf,t=;
for(int i=; i<=n; i++)
if(d[l][i]+d[i][r]==d[l][r])
for(int j=; j<=n; j++)
if(d[l][j]+d[j][r]==d[l][r])
{
if(d[i][j]>s)continue;
t=max(min(d[i][l],d[j][l]),min(d[r][i],d[r][j]));
ans=min(ans,t);
}
printf("%d",ans);
return ;
}
TOJ 4804: 树网的核的更多相关文章
- 树网的核[树 floyd]
描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...
- [BZOJ1999][codevs1167][Noip2007]Core树网的核
[BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...
- 5.19[bzoj树网的核]
围观了final,SJTU还是飞了,泽民同志劲啊! 膜拜归膜拜...回来开题 bzoj1999树网的核 最近就喜欢给自己找切不动的题...QAQ ok.....昨天在家里做了一个下午+晚上 又困&am ...
- noip2007 树网的核
P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 设T=(V, E, W) ...
- Cogs 97. [NOIP2007] 树网的核 Floyd
题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆ 输入文件:core.in 输出文件:core ...
- [bzoj1999]树网的核
从下午坑到网上..noip的数据太弱,若干的地方写挂结果还随便过= = 最坑的就是网上有些题解没考虑周全... 第一步是找直径,用两次bfs(或者dfs,Linux下系统栈挺大的..)解决.找出其中一 ...
- 洛谷 P1099 树网的核
P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W ...
- NOIP 2007树网的核
题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...
- BZOJ1999或洛谷1099&BZOJ2282或洛谷2491 树网的核&[SDOI2011]消防
一道树的直径 树网的核 BZOJ原题链接 树网的核 洛谷原题链接 消防 BZOJ原题链接 消防 洛谷原题链接 一份代码四倍经验,爽 显然要先随便找一条直径,然后直接枚举核的两个端点,对每一次枚举的核遍 ...
随机推荐
- 利用html5canvas给图片增加文字水印
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- CF1081C Colorful Bricks
思路: dp[i][j]表示到第i个砖块为止共计有j个砖块和它左边的砖块颜色不同. 实现: #include <bits/stdc++.h> using namespace std; ty ...
- andorid 向上滑动控制标题栏显示
要实现这样的功能,原理不难,监听滑动距离再设置标题栏的透明度 下面是监听一个带头view的list实现核心代码: mbar是标题栏 mListView.setOnScrollListener(new ...
- Oracle 存储过程调用语句
#oracle 存储过程调用语句declare v_custName varchar2(10); --客户姓名 v_num number; --订单分布天数 v_time number; --每日订单 ...
- (十二)maven之nexus仓库的基本用法
nexus仓库的基本用法 ① 启动nexus. 上一章有提到:https://www.cnblogs.com/NYfor2018/p/9079068.html ② 访问http://localhost ...
- (一)maven之创建一个maven项目
为什么要使用Maven? 1. maven使用的是本地仓库存储jar,所有项目都会共用仓库中的同一份jar. 2. Spring core.jar必须同时引用版本兼容的common-logging ...
- 迅为iMX6Q/PLUS开发板烧写设备树内核 Qt 系统
迅为iMX6Q 和 iMX6PLUS 两个硬件版本,设备树镜像的烧写方法以及镜像所在目录,镜像名称全部一致. 如果用的是 iMX6Q 版本,想要烧写设备树版本镜像,请使用 iMX6Q 设备树版本的光盘 ...
- Robot Framework(十三) 执行测试用例——创建输出
3.5创建输出 执行测试时会创建几个输出文件,并且所有这些文件都与测试结果有某种关联.本节讨论创建的输出,如何配置它们的创建位置以及如何微调其内容. 3.5.1不同的输出文件 输出目录 输出文件 日志 ...
- 浏览器输入一个url到整个页面显示出来经历了哪些过程?
https://cloud.tencent.com/developer/article/1396399 https://www.cnblogs.com/haonanZhang/p/6362233.ht ...
- 浅谈web前端开发
我个人认为前端攻城狮其实就是编程技术人员,用一句话来形容“比UI设计懂技术,比技术人员更懂交互”,当然也有人说前端工程师是工程师中的设计师,是设计师中的工程师. 好了废话不多说了,下面进入正题吧! ...