题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609

算不合法的比较方便;

枚举最大的边,每种情况算了2次,而全排列算了6次,所以还要乘3;

注意枚举最大边的范围是 mx 而不是 lim !!否则会超过开的数组范围!!!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
typedef long long ll;
int const xn=(<<),xm=1e5+;
db const Pi=acos(-1.0);
int n,rev[xn],lim,num[xm];
struct com{db x,y;}a[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
if(tp==)return;
for(int i=;i<lim;i++)a[i].x=a[i].x/lim;
}
int main()
{
int T=rd();
while(T--)
{
n=rd(); int mx=;
memset(num,,sizeof num);
for(int i=,x;i<=n;i++)x=rd(),num[x]++,mx=max(mx,x);
lim=; int l=;
while(lim<=mx+mx)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<lim;i++)a[i].x=,a[i].y=;
for(int i=;i<=mx;i++)a[i].x=num[i];
fft(a,);
for(int i=;i<lim;i++)a[i]=a[i]*a[i];
fft(a,-);
for(int i=;i<lim;i+=)a[i].x=(ll)(a[i].x+0.5)-num[i/];
ll sum=(ll)n*(n-)*(n-),ans=sum; ll pre=;
for(int i=;i<=mx;i++)//mx
{
pre+=*(ll)(a[i].x+0.5);
if(num[i])ans-=num[i]*pre;//num[i]*...!
}
printf("%.7f\n",1.0*ans/sum);
}
return ;
}

hdu 4609 3-idiots —— FFT的更多相关文章

  1. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  2. HDU 4609 3-idiots (组合数学 + FFT)

    题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是  能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...

  3. HDU 4609 3-idiots ——(FFT)

    这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...

  4. hdu 4609: 3-idiots (FFT)

    题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...

  5. 解题:HDU 4609 Three Idiots

    题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...

  6. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  7. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  8. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  9. hdu 4609 3-idiots <FFT>

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...

  10. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

随机推荐

  1. Linux模块机制浅析_转

    Linux模块机制浅析 转自:http://www.cnblogs.com/fanzhidongyzby/p/3730131.htmlLinux允许用户通过插入模块,实现干预内核的目的.一直以来,对l ...

  2. php信号处理

    pcntl pcntl_signal 信号注册函数 pcntl_alarm 指定秒数中断程序执行任务. 每次执行只会有一个定时器生效,若之前计时器还没结束就定义新定时器,会替代之前定时器并返回之前定时 ...

  3. ASP.NET MVC4+BootStrap 实战(一)

    好久没有写关于web开发的文章了,进到这个公司一直就是winform和Silverlight,实在是没有实战web项目的机会.大D也辞职了,去搞web app了.自己也该闲暇时间多学习学习,每天进步一 ...

  4. PHP CURL 中文说明

    1.CURL是利用URL语法在命令行方式下工作的开源文件传输工具. 2.它被广泛应用在Unix.多种Linux发行版中.而且有DOS和Win32.Win64下的移植版本号. 3.它支持非常多协议:FT ...

  5. Unix环境高级编程——守护进程记录总结(从基础到实现)

    一.概念及其特征 守护进程是系统中生存期较长的一种进程,常常在系统引导装入时启动,在系统关闭时终止,没有控制终端,在后台运行.守护进程脱离于终端是为了避免进程在执行过程中的信息在任何终端上显示并且进程 ...

  6. Filebeat+ELK

    Filebeat+ELK filebeat是logstash的升级版,从功能上来说肯定不如logstash,但是logstah比较耗费资源: filebeat安装 暂时依托于window系统 下载fi ...

  7. Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)

    https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...

  8. python3用pdfminer3k在线读取pdf文件

    import importlib import sys import random from urllib.request import urlopen from urllib.request imp ...

  9. SQL Server分区表,能否按照多个列作为分区函数的分区依据(转载)

    问: Hi, I have a table workcachedetail with 40 million rows which has 8 columns.We decided to partiti ...

  10. PAT 甲级 1065. A+B and C (64bit) (20) 【大数加法】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1065 思路 因为 a 和 b 都是 在 long long 范围内的 但是 a + b 可能会 ...