字符串匹配是计算机的基本任务之一。

  举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

  许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

  这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

  1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.


  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

二.KMP算法

举例说明:

S:  a b a b c a b a b a

P:  a b a b a

KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。

  在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。

  对于next[]数组的定义如下:

 1) next[j] = -1  j = 0

 2) next[j] = max(k): 0<k<j   P[0...k-1]=P[j-k,j-1]

 3) next[j] = 0  其他

 如:

 P      a    b   a    b   a

 j      0    1   2    3   4

next    -1   0   0    1   2

 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]

 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

代码实现如下:

int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j]; //消除了指针i的回溯
}
if(j==strlen(p))
return i-strlen(p);
}
return -1;
}

  因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。

1.按照递推的思想:

根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]

1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;

2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。

因此可以这样去实现:

void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j<strlen(p)-1)
{
if(k==-1||p[j]==p[k]) //匹配的情况下,p[j]==p[k]
{
j++;
k++;
next[j]=k;
}
else //p[j]!=p[k]
k=next[k];
}
}
 

KMP匹配的更多相关文章

  1. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  2. BNUOJ-26580 Software Bugs KMP匹配,维护

    题目链接:http://www.bnuoj.com/bnuoj/problem_show.php?pid=26580 题意:给一个模式串,然后m个匹配串,要求删掉匹配串中的所有存在的模式串,使得余下的 ...

  3. kmp匹配详解

    字符串算法都是毒瘤的 一.kmp算法的用处 在文本串中查找模式串的位置,数量 文本串:要在这个字符串查找模式串 模式串:在文本串中查找的字符串 全是废话 二.kmp算法的思想 话说kmp好像是3个发明 ...

  4. TYVJ P1068 STR Label:KMP匹配 不懂

    描述 给你两个串A,B,可以得到从A的任意位开始的子串和B匹配的长度.给定K个询问,对于每个询问给定一个x,求出匹配长度恰为x的位置有多少个.N,M,K<=200000 输入格式 第一行三个数  ...

  5. KMP(匹配)

    Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Input 输入中含有一些数据, ...

  6. 流动python - 字符串KMP匹配

    首先我们看一下简单的字符串匹配. 你可以把文本字符串s固定,模式字符串p从s对齐的左边缘,作为承担部分完全一致,匹配成功,失败将是模式字符串p整体向右1地点,继续检查对齐部分,重复. #朴素匹配 de ...

  7. AC自动机——多个kmp匹配

    (并不能自动AC) 介绍: Aho-Corasick automaton,最经典的处理多个模式串的匹配问题. 是kmp和字典树的结合. 精髓与灵魂: ①利用trie处理多个模式串 ②引入fail指针. ...

  8. POJ 3080 Blue Jeans 找最长公共子串(暴力模拟+KMP匹配)

    Blue Jeans Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20966   Accepted: 9279 Descr ...

  9. 【字符串】跳来跳去的KMP匹配

    原理: 不给予证明啦(懒得一批 但是代码中有给还算详细的注释 参考:https://www.cnblogs.com/yjiyjige/p/3263858.html 模板题: 洛谷P3375: http ...

  10. KMP匹配 (1)

    ---恢复内容开始--- 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串" ...

随机推荐

  1. 【puppeteer+Node.js】学习

    总结了一下有关puppeteer的学习的网站,以后还会继续更新 puppeteer 介绍 Puppeteer是一个通过DevTools Protocol控制headless chromium的高级no ...

  2. 深入Asyncio(十二)Asyncio与单元测试

    Testing with asyncio 之前有说过应用开发者不需要将loop当作参数在函数间传递,只需要调用asyncio.get_event_loop()即可获得.但是在写单元测试时,可能会需要用 ...

  3. git for windows 无法结束node进程(windows下杀进程)

    问题 windows 系统下,如果用CMD命令行启动node服务,Ctrl + C 即可结束命令 git bash 用起来比命令行方便,但是Ctrl + C 并不会结束node服务,再次启动会报如下错 ...

  4. linux 改动rootpassword以及忘记rootpassword

    改动rootpassword: $ passwd root 或者sudo passwd root $password:  (要求输入旧的密码) $new  password:(输入两遍新密码) 忘记r ...

  5. 九度OJ 1015:还是A+B (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6773 解决:4031 题目描述: 读入两个小于10000的正整数A和B,计算A+B.需要注意的是:如果A和B的末尾K(不超过8)位数字相同 ...

  6. Error524 源站处理超时 Error 524: A timeout occurred

    https://su.baidu.com/helps/index.html#/4/5a61e4b5b34f697f13234a5b Error524 源站处理超时 更新时间:2018-01-19 20 ...

  7. HNOI2017

    本蒟蒻表示终于把$HNOI2017$全AC了... 万岁! 附上各个题的题解: $DAY1$: $T1$: BZOJ4825: [Hnoi2017]单旋 $T2$: BZOJ4826: [Hnoi20 ...

  8. ajax实时获取下拉数据

    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> ajax ...

  9. ajax 异步 跨域上传图片

    客户端 <label for="text">名称</label> <input type="text" id="text ...

  10. 分享知识-快乐自己:SpringMvc中的四种数据源及相关配置(整合快速集成开发)

     数据库连接: jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://39.105.105.186:3306/SpringMybatis?us ...