题目链接

题意

有\(N\)头牛,\(F\)个食物和\(D\)个饮料。每头牛都有自己偏好的食物和饮料列表。

问该如何分配食物和饮料,使得尽量多的牛能够既获得自己喜欢的食物又获得自己喜欢的饮料。

建图

  1. 在 源点 到 食物 之间加边,边权为\(1\)

  2. 在 饮料 到 汇点 之间加边,边权为\(1\)

  3. 将牛拆成两点,在两点之间加边,边权为\(1\)

     	这一点很重要,可以从以下两个方面去考虑:
    1) 从含义上,只要流为1,这头牛就被满足了,多了就纯属是浪费。
    2) 从操作上,最后答案是根据最大流的值来判断的,被满足的牛的数目即最大流的值。这一个判断是建立在这样一个事实上的:默认经过每头牛的流为1。因此需要拆点在中间加上限制。
    (其实第一点考虑中所说的“浪费”还是有些含糊其辞的,最合理的考虑还是第二点)
  4. 在 食物 到 喜欢它的牛(1) 之间连边,边权为\(1\)

  5. 在 喜欢它的牛(2) 到 饮料 之间连边,边权为\(1\)

Code

#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#define maxn 100010
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
struct Edge { int to, ne, c; }edge[maxn];
int dep[maxn], ne[maxn], n,f,d, tot, s,t;
void add(int u, int v, int c) {
edge[tot] = {v, ne[u], c};
ne[u] = tot++;
edge[tot] = {u, ne[v], 0};
ne[v] = tot++;
}
int bfs(int src) {
memset(dep, 0, sizeof dep);
dep[src] = 1;
queue<int> q;
while (!q.empty()) q.pop();
q.push(src);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && !dep[v]) dep[v] = dep[u] + 1, q.push(v);
}
}
return dep[t];
}
int dfs(int u, int flow) {
if (u == t) return flow;
int ret = 0;
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && dep[v] == dep[u] + 1) {
int c = dfs(v, min(flow-ret, edge[i].c));
edge[i].c -= c;
edge[i^1].c += c;
ret += c;
if (ret == flow) break;
}
}
if (!flow) dep[u] = 0;
return ret;
}
int main() {
while (scanf("%d%d%d", &n, &f, &d) != EOF) {
s = 0, t = f+2*n+d+1;
tot = 0; memset(ne, -1, sizeof ne);
for (int i = 1; i <= f; ++i) add(s, i, 1);
for (int i = 1; i <= d; ++i) add(f+2*n+i, t, 1);
for (int i = 1; i <= n; ++i) {
int a,b,x;
add(f+i, f+n+i, 1);
scanf("%d%d", &a, &b);
while (a--) {
scanf("%d", &x);
add(x, f+i, 1);
}
while (b--) {
scanf("%d", &x);
add(f+n+i, f+2*n+x, 1);
}
}
int ans=0, tmp;
while (bfs(s)) {
while (tmp = dfs(s, inf)) ans += tmp;
}
printf("%d\n", ans);
}
return 0;
}

poj 3281 Dining 拆点 最大流的更多相关文章

  1. POJ 3281 Dining (拆点)【最大流】

    <题目链接> 题目大意: 有N头牛,F种食物,D种饮料,每一头牛都有自己喜欢的食物和饮料,且每一种食物和饮料都只有一份,让你分配这些食物和饮料,问最多能使多少头牛同时获得自己喜欢的食物和饮 ...

  2. POJ 3281 Dining (网络流之最大流)

    题意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 100) 种饮料.每头牛都有各自喜欢的食物和饮料, 而每种食物或饮料只能分配给 ...

  3. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  4. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  5. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  6. POJ 3281 网络流 拆点保证本身只匹配一对食物和饮料

    如何建图? 最开始的问题就是,怎么表示一只牛有了食物和饮料呢? 后来发现可以先将食物与牛匹配,牛再去和饮料匹配,实际上这就构成了三个层次. 起点到食物层边的容量是1,食物层到奶牛层容量是1,奶牛层到饮 ...

  7. POJ 3281 Dining(最大流+拆点)

    题目链接:http://poj.org/problem?id=3281 题目大意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 1 ...

  8. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  9. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

随机推荐

  1. 三、Shell 传递参数

    Shell 传递参数 我们可以在执行 Shell 脚本时,向脚本传递参数,脚本内获取参数的格式为:$n.n 代表一个数字,1 为执行脚本的第一个参数,2 为执行脚本的第二个参数,以此类推…… 实例 以 ...

  2. JavaScript(E5,6) 正则学习总结学习,可看可不看!

    1.概述 正则表达式(实例)是一种表达文本模式(即字符串结构)的方法. 创建方式有两种方式: 一种是使用字面量,以斜杠表示开始和结束. var regex = /xyz/ 另一种是使用RegExp构造 ...

  3. vue.js 图表chart.js使用

    在使用这个chart.js之前,自己写过一个饼图,总之碰到的问题不少,所以能用现成的插件就用,能节省不少时间 这里不打算介绍chart.js里面详细的参数意义和各个参数的用法,只作为首次使用chart ...

  4. [jzoj5233]概率博弈(树形DP)

    Description 小A和小B在玩游戏.这个游戏是这样的: 有一棵

  5. Robot Framework Webdriver For Firefox FQA

    记录一下过程中使用的问题,希望大家碰到类似问题能够提高效率解决. 问题1.通过js脚本定位unieap框架网页中radio选项. 通过执行js脚本获取radio选项,并通过xpath路径点击. js脚 ...

  6. sql优化系列3(收集来源http://bbs.csdn.net/topics/250004467)

    如何加快查询速度? 1.升级硬件   2.根据查询条件,建立索引,优化索引.优化访问方式,限制结果集的数据量. 3.扩大服务器的内存 4.增加服务器CPU个数 5.对于大的数据库不要设置数据库自动增长 ...

  7. java十分钟速懂知识点——引用

    一.由健忘症引起的问题 今天闲来没事在日志中瞟见了个OutOfMemoryError错误,不由得想到前一段时间看到一篇面经里问到Java中是否有内存泄露,这个很久以前是留意过的,大体记得内存溢出和内存 ...

  8. spoj 104 Highways(Matrix-tree定理)

    spoj 104 Highways 生成树计数,matrix-tree定理的应用. Matrix-tree定理: D为无向图G的度数矩阵(D[i][i]是i的度数,其他的为0),A为G的邻接矩阵(若u ...

  9. MySQL之索引(四)

    压缩索引 MyISAM使用前缀压缩来减少索引的大小,从而让更多的索引可以放入内存中,这在某些情况下能极大地提高性能.默认只压缩字符串,但通过参数设置也可以对整数做压缩. MyISAM压缩每个索引块的方 ...

  10. error LNK2001: unresolved external symbol ___CxxFrameHandler3

    Q:  VS2005编译的静态库, 在vc++6.0中连接出现错误 error LNK2001: unresolved external symbol ___CxxFrameHandler3 A:   ...