POJ 2891
| Time Limit: 1000MS | Memory Limit: 131072K | |
| Total Submissions: 19509 | Accepted: 6592 |
Description
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
- Line 1: Contains the integer k.
- Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2
8 7
11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
模不互素不能用CRT,所有就有了我解线性方程组的方法?
但是有个关键步骤不太懂。。只是会用这个板子。。
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include<iostream>
#include <cmath>
#include<string>
#define ll long long
#define dscan(a) scanf("%d",&a)
#define mem(a,b) memset(a,b,sizeof a)
using namespace std;
#define MAXL 1105
#define Endl endl
#define maxn 1000005
ll x,y;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==) {
x=;y=;return a;
}
ll d=exgcd(b,a%b,x,y);
ll temp=x;
x=y;
y=temp-a/b*y;
return d;
}
int main()
{
ll k,a,b,c,d;
while(~scanf("%lld",&k))
{
cin>>a>>b;
//cout<<"hhh"<<Endl;
int flag=;
for(ll i=;i<k;++i)
{
c=read();d=read();
if(flag) continue;
ll r=d-b;
ll hhh=exgcd(a,c,x,y);
if(r%hhh) {flag=;continue;}
ll tmp=c/hhh;
x=((r/hhh*x)%tmp+tmp)%tmp;//不理解
b=a*x+b;
a=a*c/hhh;
}
if(flag) cout<<"-1"<<endl;
else cout<<b<<endl;
}
}
POJ 2891的更多相关文章
- poj 2891 Strange Way to Express Integers(中国剩余定理)
http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法
http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...
- 【POJ 2891】 Strange Way to Express Integers
[题目链接] http://poj.org/problem?id=2891 [算法] exgcd [代码] #include <algorithm> #include <bitset ...
- [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- POJ 2891 中国剩余定理(不互素)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 17877 ...
- 【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- 一些关于中国剩余定理的数论题(POJ 2891/HDU 3579/HDU 1573/HDU 1930)
2891 -- Strange Way to Express Integers import java.math.BigInteger; import java.util.Scanner; publi ...
随机推荐
- Java 数值计算精度问题
最近刚好做到涉及金额方面的项目,不像普通in,double,floatt类型来修饰,而是用BigDecimal来修饰,就去收集下了这方面的资料,整理如下: 1.float和double只能用来做科学计 ...
- ls显示前几行或后几行数据
显示前3行数据 ls -l|head -n 3 显示后3行数据 ls -l|tail -n 3
- 3.Cisco Packet Tracer中关于交换机端口安全的设置
本次实验将在这幅拓扑图的基础上完成 我们会对pc0在交换机上进行mac地址绑定,pc1访问时则交换机断开端口 1.为pc机配置ip地址 pc0:192.168.1.1 pc1:192.168.1.2 ...
- python面试题Python2.x和Python3.x的区别
所属网站分类: 面试经典 > python 作者:外星人入侵 原文链接: http://www.pythonheidong.com/blog/article/22/ 来源:python黑洞网 w ...
- poj 3104 晾衣服问题 最大化最小值
题意:n件衣服各含有ai水分,自然干一分钟一个单位,放烘干机一分钟k个单位,问:最短时间? 思路: mid为最短时间 如果 a[i]-mid>0说明需要放入烘干机去烘干 烘干的时间为x 那么满 ...
- 笔记-python-tutorial-8.errors and exceptions
笔记-python-tutorial-8.errors and exceptions 1. errors and exceptions 1.1. syntax errors >& ...
- 输出1到最大的N位数 【微软面试100题 第六十五题】
题目要求: 输入数字n,按顺序输出从1到最大的n位10进制数. 例如,输入3,则输出1.2.3....999(最大的3位数). 参考资料:剑指offer第12题. 题目分析: 如果我们在数字前面补0的 ...
- jmter+ANT+jekins之配置文件简单优化(build.xml)
<?xml version="1.0" encoding="utf-8"?> <project name="ant-jmeter-t ...
- CSU-1163 寒衣调
CSU-1163 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆. 某日两人至奈 ...
- 基于单层决策树的AdaBoost算法源码
基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoos ...