基于R进行相关性分析

一、相关性矩阵计算:

[1] 加载数据:

  >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",header=FALSE)

说明:csv格式的数据,header=FALSE 表示没有标题,即数据从第一行开始。

[2]  查看导入数据的前几行,

>head(data)

  

[3] 删除数据的7,8列,都是0

  >data = data[1:6]

  >head(data)

  

[4] 计算相关性矩阵(可以自己指定采用的方法,"pearson", "kendall", "spearman")

  >cor_matr = cor(data)

  >cor_matr

   

二 相关系数的显著性水平(Correlation significance levels (p-value)

  使用Hmisc 包,不仅可以计算相关性矩阵,还可以计算对应的显著性水平

[1] 安装包 Hmisc (依赖包也会一并安装,lib代表安装包的路径)

  >install.packages("Hmisc",lib="E:/Program Files/R/R-3.3.0/library/")

[2] 加载包

  >library(Hmisc)

[3] 计算相关性和显著水平 (as.matrix(data) 表示将data转换成矩阵)

  >rcorr(as.matrix(data))

     

输出说明:

r :第一个矩阵为相关性矩阵

n :  处理数据的总记录数(行数)

P :  显著性水平矩阵(越小说明越显著)

三、可视化相关性分析

  • symnum() function
  • corrplot() function to plot a correlogram
  • scatter plots
  • heatmap

[1] 使用 symnum() 函数实现可视化 (cor_matr 是我们上文中cor()函数计算出来的相关性矩阵)

>symnum(cor_matr)

    

符号说明:在输出的最后一行,说明了符号的意义,例如 [0.9 , 0.95) 这个区间使用 * 表示。其他符号类似

[2] 使用 corrplot() 函数实现可视化(这里需要使用到corrplot包,没有安装的需要安装)

> library(corrplot)

>corrplot(cor_matr, type="upper", order="hclust", tl.col="black", tl.srt=45)

输出说明:用不同颜色表示了相关性的强度,根据最右边的颜色带来看,越接近蓝色说明相关性越高。其中圆形的大小也说明了行惯性的大小。

[3] 使用 PerformanceAnalytics 包进行可视化

>library(PerformanceAnalytics)

>chart.Correlation(data,histogram = TRUE,pch=19)

    

输出说明:

    •   对角线给出了变量自身的分布
    •   下三角形(对角线的左下方),给出了两个属性的散点图,可以看到第二行第一列的散点图显示出v1和v2具有很高的线性相关性
    •   上三小形(对角线的右上方),数字表示连个属性的相关性值,型号表示显著程度(星星越多表明越显著)

[4] heatmap 可视化

>col = colorRampPalette(c("blue", "white", "red"))(20)

>heatmap(x = cor_matr, col = col, symm = TRUE)

    

  说明:第一行是制作调色板,红色表示相关性最高。第二行参数说明,x: 相关性矩阵(前文已经计算),col: 调色板,symm: 以对称矩阵的形式显示(可以看到画出来的图是中心对称的,不过前提是输入的矩阵是方阵)

参考:

[1] Correlation matrix : A quick start guide to analyze, format and visualize a correlation matrix using R software

http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-software

[2] Significance of the Correlation Coefficient

http://janda.org/c10/Lectures/topic06/L24-significanceR.htm

[3] Installing R packages

https://www.r-bloggers.com/installing-r-packages/

使用R进行相关性分析的更多相关文章

  1. 基于R进行相关性分析--转载

    https://www.cnblogs.com/fanling999/p/5857122.html 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231 ...

  2. R_Studio(学生成绩)数据相关性分析

    对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...

  3. 用R进行文本分析初探——以《红楼梦》为例

    一.写在前面的话~ 刚吃饭的时候同学问我,你为什么要用R做文本分析,你不是应该用R建模么,在我和她解释了一会儿后,她嘱咐我好好写这篇博文,嗯为了娟儿同学,细细说一会儿文本分析. 文本数据挖掘(Text ...

  4. Python文章相关性分析---金庸武侠小说分析

    百度到<金庸小说全集 14部>全(TXT)作者:金庸 下载下来,然后读取内容with open('names.txt') as f: data = [line.strip() for li ...

  5. R语言︱情感分析—词典型代码实践(最基础)(一)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中 ...

  6. python数据相关性分析 (计算相关系数)

    #-*- coding: utf-8 -*- #餐饮销量数据相关性分析 计算相关系数 from __future__ import print_function import pandas as pd ...

  7. 试题 H: 人物相关性分析 第十届蓝桥杯

    试题 H: 人物相关性分析时间限制: 1.0s 内存限制: 512.0MB 本题总分: 20 分[问题描述]小明正在分析一本小说中的人物相关性.他想知道在小说中 Alice 和 Bob有多少次同时出现 ...

  8. Python文章相关性分析---金庸武侠小说分析-2018.1.16

    最近常听同事提及相关性分析,正巧看到这个google的开源库,并把相关操作与调试结果记录下来. 输出结果: 比较有意思的巧合是黄蓉使出打狗棒,郭靖就用了降龙十八掌,再后测试了名词的解析. 小说集可以百 ...

  9. Spark MLlib基本算法【相关性分析、卡方检验、总结器】

    一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correla ...

随机推荐

  1. [C#]中英文字幕合并的小程序

    今天班里小组合作录了一个视频,我给它做了字幕的时间轴.为了让这个视频假装很高端的样子,我想再加上英文的字幕.中文的纯字幕文本先搞成一句一行,然后放到Google翻译上,复制英文保存在Eng.txt. ...

  2. MySQL 创建用户与修改密码

    创建用户的 3 方法: 1 .create user userName identifed by 'yourPassword'; 2. grant select on *.* to userName@ ...

  3. PCB打样镀层问题

    现在大部分pcb打样所用PCB板一般有锡板和金板之分(一般根据客户要求和产品特 性选择),那么它们有什么区别呢?现在我将他们的区别作比较如下: 1. 从成本方面来说,锡板价格低,金板价格高. 2. 从 ...

  4. 一維條碼 EAN13 的編碼方式

    何謂 EAN-13碼 ? ▲ 國家代號(3位數) 中華民國的國家代號為471. ▲ 廠商代號(6位數) 由本會核發給廠商6位數的廠商代號. ▲ 商品代號(3位數) 由廠商自行編定,按一物一號的原則,不 ...

  5. Qt窗口屏幕居中显示(有专门的QDesktopWidget,先计算后显示)

    窗口的屏幕居中显示问题,在各开发工具中原理相同,首先使用特定的方法得到显示屏幕的宽度和高度,再根据窗口本身的宽度和高度计算出窗口的左上角坐标位置. Qt中可以采用两种方法达到窗口的屏幕居中显示: 方法 ...

  6. android下tcpdump抓包

    tcpdump是最快捷方便的抓包方式,还可以加深对网络协议的理解.android下可以通过如下方式抓包: 1 Android上启动tcpdump Android设备可以把tcpdump的可执行文件上传 ...

  7. Android杂谈--ListView之BaseAdapter的使用

    话说开发用了各种Adapter之后感觉用的最舒服的还是BaseAdapter,尽管使用起来比其他适配器有些麻烦,但是使用它却能实现很多自己喜欢的列表布局,比如ListView.GridView.Gal ...

  8. 2.一步一步学c#(二):核心c#

    简单的控制台应用程序. 代码(它有把某条消息写到屏幕上的一个类组成) 编译并运行程序得到结果: 在上面的代码示例中,前几行代码与名称空间有关,名称空间是把相关类组合在一起的方式.namespace关键 ...

  9. JAVA处理XML

    <xml>  <ToUserName><![CDATA[toUser]]></ToUserName>  <FromUserName>< ...

  10. FMDB 直接将查询结果转化为字典

    今天学习FMDB框架,发现非常好用的一点,就是就以把查询结果直接转化为字典 NSString *querySql = @"select * from stuInfo"; NSMut ...