Gnome Tetravex


Time Limit: 10 Seconds      Memory Limit: 32768 KB

Hart is engaged in playing an interesting game, Gnome Tetravex, these days. In the game, at the beginning, the player is given n*n squares. Each square is divided into four triangles marked four numbers (range from 0 to 9). In a square, the triangles are the left triangle, the top triangle, the right triangle and the bottom triangle. For example, Fig. 1 shows the initial state of 2*2 squares.


Fig. 1 The initial state with 2*2 squares

The player is required to move the squares to the termination state. In the
termination state, any two adjoining squares should make the adjacent triangle
marked with the same number. Fig. 2 shows one of the termination states of the
above example.


Fig. 2 One termination state of the above example

It seems the game is not so hard. But indeed, Hart is not accomplished in the
game. He can finish the easiest game successfully. When facing with a more complex
game, he can find no way out.

One day, when Hart was playing a very complex game, he cried out, "The
computer is making a goose of me. It's impossible to solve it." To such
a poor player, the best way to help him is to tell him whether the game could
be solved. If he is told the game is unsolvable, he needn't waste so much time
on it.

Input

The input file consists of several game cases. The first line of each game case
contains one integer n, 0 <= n <= 5, indicating the size of the game.

The following n*n lines describe the marking number of these triangles. Each
line consists of four integers, which in order represent the top triangle, the
right triangle, the bottom triangle and the left triangle of one square.

After the last game case, the integer 0 indicates the termination of the input
data set.

Output

You should make the decision whether the game case could be solved. For each
game case, print the game number, a colon, and a white space, then display your
judgment. If the game is solvable, print the string "Possible". Otherwise,
please print "Impossible" to indicate that there's no way to solve
the problem.

Print a blank line between each game case.

Note: Any unwanted blank lines or white spaces are unacceptable.

Sample Input

2
5 9 1 4
4 4 5 6
6 8 5 4
0 4 4 3
2
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
0

Output for the Sample Input

Game 1: Possible

Game 2: Impossible

题意:在一个N*N矩形区域中,N*N个小矩形重新拼成一个符合规则(左右相连,上下相连值相等)的矩形。

思路:判断出有多种小矩形,接着一个一拼。

收获:异或:两者不相等时为1.

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
#define maxn 30 struct Node
{
int u, r, d, l;
};
Node node[maxn];
int num[maxn];
int map1[][];
int n, cnt;
bool fk;
void dfs(int p)
{
if(fk) return;
if(p == n*n)
{
fk = ;
return;
}
for(int i = ; i < cnt; i++)
{
if(num[i] == ) continue;
int x = p/n;
int y = p%n;
if(y> && node[map1[x][y-]].r ^ node[i].l) continue;
if(x> && node[map1[x-][y]].d ^ node[i].u) continue;
map1[x][y] = i;
num[i]--;
dfs(p+);
if(fk) return ;
num[i]++;
}
}
int main()
{
int cas = ;
int u, r, l, d;
int flag = ;
while(~scanf("%d",&n) && n)
{
cnt = ;
memset(num, , sizeof num);
for(int i = ; i < n*n; i++)
{
scanf("%d%d%d%d",&u, &r, &d, &l);
int f = ;
for(int j = ; j < cnt; j++)
{
if(node[j].d == d && node[j].l == l && node[j].r == r && node[j].u == u)
{
num[j]++;
f = ;
break;
}
}
if(!f)
{
node[cnt].d = d; node[cnt].l = l; node[cnt].r = r; node[cnt].u = u;
num[cnt] = ;
cnt++;
}
}
fk = ;
dfs();
if(cas > )
puts("");
printf("Game %d: ",cas++);
if(fk)
printf("Possible\n");
else
printf("Impossible\n");
}
return ;
}

ZOJ 1008 Gnome Tetravex(DFS)的更多相关文章

  1. [ZOJ 1008]Gnome Tetravex (dfs搜索 + 小优化)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1008 题目大意:给你n*n的矩阵,每个格子里有4个三角形,分别是 ...

  2. ZOJ 1008 Gnome Tetravex(DFS)

    题目链接 题意 : 将n*n个正方形进行排列,需要判断相邻的正方形的相邻三角形上边的数字是不是都相等. 思路 : 只知道是个深搜,一开始不知道怎么搜,后来看了题解才明白,就是说不是自己去搜,而是将给定 ...

  3. zoj 1008 Gnome Tetravex

    开放式存储阵列为每平方米有几个,否则,超时-- #include <stdio.h> #include <string.h> #include <iostream> ...

  4. 1008 Gnome Tetravex

    练习使用DPS的题,不知道有无别的做法,思路不复杂.形式是统计并且进行数字配对. #include <stdio.h> ][],note[],ans[]; void ini(){ int ...

  5. zoj 1008 暴力枚举求解dfs+优化

    /* 现将相同的合并计数. 再枚举判断是否符合当cou==n*n是符合就退出 */ #include<stdio.h> #include<string.h> #define N ...

  6. Gnome Tetravex

    zoj1008:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1008 题目意思是有一个游戏,即给出一个图,该图是由n*n个 ...

  7. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  8. ZOJ 3436 July Number(DFS)

    题意   把一个数替换为这个数相邻数字差组成的数  知道这个数仅仅剩一位数  若最后的一位数是7  则称原来的数为 July Number  给你一个区间  求这个区间中July Number的个数 ...

  9. [ZOJ 1003] Crashing Balloon (dfs搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3 题目大意:给你a,b两个数,问当b由约数1到100组成时,a能否由其 ...

随机推荐

  1. 【剑指offer】面试题34:丑数

    题目: 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 思路: 第一 ...

  2. Divide and Conquer.(Merge Sort) by sixleaves

    algo-C1-Introductionhtml, body {overflow-x: initial !important;}html { font-size: 14px; }body { marg ...

  3. 程序员求职之道(《程序员面试笔试宝典》)之看着别人手拿大把的offer,不淡定了怎么办?

    不管是在哪里,不管发生什么事,不要随便放下自己. --<当男人恋爱时> 很多求职者都会面临一个问题:别人手拿大把大把的offer了,而自己却是两手空空,别人签约之后已经过着"猪狗 ...

  4. 新建一个MVCProject 项目

    App_Data文件夹用于存放数据库文件的 App_Start文件夹用于存放Web应用程序启动时需要进行重要配置的类文件 Content 文件夹用于存放主题样式文件 Controllers 文件夹用于 ...

  5. 苹果拒绝App内部使用版本检测功能

    10.6 - Apple and our customers place a high value on simple, refined, creative, well thought through ...

  6. python之路-模块安装 paramiko

    paramiko介绍(全是洋文,看不懂啊,赶紧有道翻译吧,等有朝一日,我去报个华尔街): "Paramiko" is a combination of the esperanto ...

  7. Android学习总结——本地广播机制

    为了简单解决广播的安全性问题,Android引入了一套本地广播机制,使用这个机制发出的广播只能在程序的内部进行传递,只能接受来自本应用程序发出的广播.否则当我们发送一些携带关键数据的广播可能被截获,一 ...

  8. java 中打印调用栈

    source-code: public class A { public A() {} private static void printStackTrace() {         StackTra ...

  9. BFC,IFC,GFC,FFC的定义及功能

    What's FC?一定不是KFC,FC的全称是:Formatting Contexts,是W3C CSS2.1规范中的一个概念.它是页面中的一块渲染区域,并且有一套渲染规则,它决定了其子元素将如何定 ...

  10. 利用MetaWeblog API 自制博客发布小工具

    博客园提供了诸多数据接口, 利用这些接口可以很容易的实现博客的发布,修改,删除等 1.需要引用一个DLL:为CookComputing.XmlRpcV2 2.新建一个类,在其中是一些要实现的东西,如: ...