dijkstra 优先队列最短路模板

;
*maxn];
,):id(a),dist(b){}
));
;i<=n;i++)dist[i]=inf;
dist[st]=;
;i=edge[i].next)
{
v=edge[i].to;
if(dist[v]>dist[u]+edge[i].val)
{
dist[v]=dist[u]+edge[i].val;
q.push(Node(v,dist[v]));
}
}
}
}
my code
dijkstra 优先队列最短路模板的更多相关文章
- 关于dijkstra求最短路(模板)
嗯.... dijkstra是求最短路的一种算法(废话,思维含量较低, 并且时间复杂度较为稳定,为O(n^2), 但是注意:!!!! 不能处理边权为负的情况(但SPFA可以 ...
- 【poj 1724】 ROADS 最短路(dijkstra+优先队列)
ROADS Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12436 Accepted: 4591 Description N ...
- (模板)poj2387(dijkstra+优先队列优化模板题)
题目链接:https://vjudge.net/problem/POJ-2387 题意:给n个点(<=1000),m条边(<=2000),求结点n到结点1的最短路. 思路:dijkstra ...
- 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛
传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...
- ACM - 最短路 - AcWing 849 Dijkstra求最短路 I
AcWing 849 Dijkstra求最短路 I 题解 以此题为例介绍一下图论中的最短路算法.先让我们考虑以下问题: 给定一个 \(n\) 个点 \(m\) 条边的有向图(无向图),图中可能存在重边 ...
- poj1511/zoj2008 Invitation Cards(最短路模板题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Invitation Cards Time Limit: 5 Seconds ...
- POJ3255 Roadblocks [Dijkstra,次短路]
题目传送门 Roadblocks Description Bessie has moved to a small farm and sometimes enjoys returning to visi ...
- 【bzo1579】拆点+dijkstra优先队列优化+其他优化
题意: n个点,m条边,问从1走到n的最短路,其中有K次机会可以让一条路的权值变成0.1≤N≤10000;1≤M≤500000;1≤K≤20 题解: 拆点,一个点拆成K个,分别表示到了这个点时还有多少 ...
- 51nod_1445 变色DNA 最短路模板 奇妙思维
这是一道最短路模板题,但是在理解题意和提出模型的阶段比较考验思维,很容易想到并且深深进入暴力拆解题目的无底洞当中. 题意是说:给出一个邻接矩阵,在每个点时,走且仅走向,合法路径中编号最小的点.问题是是 ...
随机推荐
- 浅析document.createDocumentFragment()与js效率
对于循环批量操作页面的DOM有很大帮助!利用文档碎片处理,然后一次性append,并且使用原生的javascript语句操作 document.createDocumentFragment()说白了就 ...
- 重启VirtualBox里面的系统提示VT-x features locked or unavailable in MSR错误
有次不小心设置了一下virtualbox里面的一些配置,然后启动系统时出现了如下提示 在网上找了一些资料尝试了一些方法偶然有一次成功 原来是自己把那个cpu个数设置成了2,改成1就好了,不知道为什么做 ...
- 支持SMTP邮箱介绍
126邮箱:POP:POP.126.comSMTP:SMTP.126.comhttp://mail.126.com/help/client_04.htm 163邮箱:POP:pop.163.comSM ...
- linux GUI程序开发
1,C++ OOP中 class与C 面向过程开发中struct非常相似
- Sql Server数据库--》事务
事务:更多的是一种处理机制(同生共死) 事务是对增删改而言的(因为她们会改变数据) 事务是对多条语句而言,多个sql语句组成,整体执行 事务的4个特点叫做ACID:分别为: 1,A:原子性->事 ...
- 初识-Android之智能短信项目相关技术整理
标签页切换采用传统的TabHost: 采用TabActivty实现TabHost. 效果图-后补: 相关技术详解推荐: http://blog.csdn.net/zhouli_05/article/d ...
- Emoji字符检查与替换
当文本包含Emoji字符的时候,存储到数据库或读取的时候需要进行编码和解码(如UTF_8),否则MySQL的存储可能有异常. 当有的文本不允许输入Emoji字符,或者显示时需要将Emoji替换为指定字 ...
- T-SQL查询:语句执行顺序
读书笔记:<Microsoft SQL Server 2008技术内幕:T-SQL查询> =============== T-SQL查询的执行顺序 =============== === ...
- Oracle学习之start with...connect by子句的用法
转自:http://www.blogjava.net/xzclog/archive/2010/03/05/314642.html,多谢博主分享 Oracle中start with…connect by ...
- jQuery 1.9不支持$.browser 怎么判断浏览器类型和版本
$.browser.mozilla = /firefox/.test(navigator.userAgent.toLowerCase());$.browser.webkit = /webkit/.te ...