基于PCA的特征提取
图像处理方面的知识也学了一段时间了,总是光看理论的话,感觉联系不上实际,第一次把理论综合的实现出来,对这些理论的印象才感觉的更深刻,也能够为后续的学习打下良好的基础。
PCA是比较老的算法,但是可靠性挺好,对于我这种新手,练练手还是不错的。
下面开始对这些算法说一说我自己的理解,如果有不正确的地方还请各位牛人指点。
主成分分析(PCA)是多变量分析中一项很老的技术,源于通信理论中的K-L变换,它考虑的是对于d维空间中的n个向量X1,X2......Xn,如何在低维空间中进行表示,这需要对其空间进行变换。
变换具体的表示如下:
其中即为对样本的一种近似表示,是样本的均值,
就是在d'维空间中的主成份分量,也就是经过PCA提取后的一组特征。
是这d'维空间的一组基。
这样即为原样本在d'维空间的一种近似。
看到这,还不知道和
是如何计算得到的,具体的推理过程就不细说了,想知道的可以自行查阅相关资料,我只写一下他们的计算公式。
是散布矩阵S的前d‘个特征向量,
是散布矩阵S的前d‘个特征值,而散布矩阵S为
,其中Z为样本矩阵X中的每个样本减去样本均值后得到的矩阵。
S是d*d的矩阵,计算量很大,幸运的是有一种快速计算的方法,这里我们考虑,一般情况下样本数目n原小于样本维数d,所以R的尺寸远小于散布矩阵S。
设是R的特征向量为,则有
对上式两边同时左乘,得
说明为散布矩阵S的特征值,至此,可以计算小矩阵R的特征向量来得到散布矩阵S的特征向量。
当计算出散布矩阵S的特征向量和特征值时,就可以对样本进行表示了。
假设计算的是前20个特征值和特征向量,那么样本就可以用这20个特征值对其进行表示,这也就是样本的主成份。
快速PCA计算的matlab实现代码如下:
function [ pcaA V] =fastPCA( A,k )
%输入:A------样本矩阵,每行为一个样本
% k------降维至k维
%输出:pcaA----降维后K维样本特征向量组成的矩阵,每行一个样本,列数k为降维后的样本特征维数
% V-------主成分分量
[r,c]=size(A);
%样本均值
meanVec = mean(A);
%计算协方差矩阵的转置 covMatT
Z=(A-repMat(meanVec,r,1));
covMatT =Z*Z';
%计算covMatT的前k个本征值和本征向量
[V D] = eigs(covMatT,k);
%得到协方差矩阵covMatT'的本征向量
V = Z'*V;
%本征向量归一化为单位本征向量
for i=1:k
V(:,i)=V(:,i)/norm(V(:,i));
end
pcaA = Z*V;
end
基于PCA的特征提取的更多相关文章
- 基于PCA的人脸识别步骤
代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...
- opencv基于PCA降维算法的人脸识别
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...
- 基于PCA和SVM的人脸识别
程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化. 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化 ...
- 基于PCA和SVM的人脸识别系统-error修改
------------------------------------------------- Undefined function or variable 'W'. Error in class ...
- pca图像识别
代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...
- Atitti 图像处理 特征提取的科技树 attilax总结
Atitti 图像处理 特征提取的科技树 attilax总结 理论 数学,信号处理,图像,计算机视觉 图像处理 滤波 图像处理 颜色转换 图像处理 压缩编码 图像处理 增强 图像处理 去模糊 图像处理 ...
- A tutorial on Principal Components Analysis | 主成分分析(PCA)教程
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components A ...
- 基于3D卷积神经网络的人体行为理解(论文笔记)(转)
基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...
- 人脸和性别识别(基于OpenCV)
描写叙述 人脸识别包含四个步骤 人脸检測:定位人脸区域,仅仅关心是不是脸: 人脸预处理:对人脸检測出来的图片进行调整优化. 收集和学习人脸:收集要识别的人的预处理过的人脸,然后通过一些算法去学习怎样识 ...
随机推荐
- NetAnalyzer笔记 之 十 通过邮件方式打造自己的bug反馈模块(C#)
在软件发布后,有个好的反馈系统,对我们后续的软件开发有着至关重要的影响,现今软件异常反馈功能模块已经成了软件中重要的组成部分了.但是对于个人软件开发者,尤其是对于我这种贫民个人软件开发者却是个不小的难 ...
- IOS-UITableView开发常用各种方法总结
实现列表有两种方式 方式一 继承UIViewController,实现UITableViewDataSource和UITableViewDelegate协议.声明UITableView. UserIn ...
- 【Spring MVC系列】--(5)理解AOP
1.java反射 实用:JAVA反射机制及应用例子 http://407827531.iteye.com/blog/1173930 系统:java反射原理 http://china-jianchen. ...
- tstring
是的,一旦知道 TCHAR 和_T 是如何工作的,那么这个问题很简单.基本思想是 TCHAR 要么是char,要么是 wchar_t,这取决于 _UNICODE 的值: // abridged f ...
- Java基础知识强化44:StringBuffer类之把数组拼接成指定格式的字符串的案例
1. 先看案例代码如下: package cn.itcast_07; /* * 把数组拼接成一个字符串 */ public class StringBufferTest2 { public stati ...
- Sybase常用函数
==================================常用函数===========================================字符串函数1)ISNULL(EXP1, ...
- dsadm-dsconf数据导入导出
cd instance-path/ds6/bin #注意黄色参数修改为跟实际环境一致 -c,--accept-cert Does not ask for confirmation before a ...
- Find命令简介
Find命令主要用于目标的搜索,尽量做到少使用,因为find会消耗大量的系统资源. 使用该命令时,需要避开服务器运行高峰期,最好在指定的小范围内进行搜索,不要轻易使用全盘搜索. Find命令常用的参数 ...
- JavaScript绑定事件的方法[3种]
在JavaScript中,有三种常用的绑定事件的方法: 在DOM元素中直接绑定: 在JavaScript代码中绑定: 绑定事件监听函数. 一. 在DOM元素中直接绑定 这里的DOM元素,可以理解为HT ...
- js生成随机数的方法小结
js生成随机数主要用到了内置的Math对象的random()方法.用法如:Math.random().它返回的是一个 0 ~ 1 之间的随机数.有了这么一个方法,那生成任意随机数就好理解了.比如实际中 ...