Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
题意:大概意思是,一批红酒开始有自身的价值,每天卖出第一个或最后一个,并且卖出的价值等于 原先的价值*存在的年数,求卖完所有的红酒能获得的最大价值
 
看完下面的提示立刻就想到了区间dp,dp[i][j]表示从i到j的最大价值,状态转移方程为dp[i][j]=max(dp[i+1][j]+a[i]*year,dp[i][j-1]+a[j]*a[j]*year);
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<set>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include<map>
using namespace std;
#define N 2006
int n;
int a[N];
int dp[N][N];
int main()
{
while(scanf("%d",&n)==1)
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i][i]=a[i]*n;
} for(int len=1;len<n;len++)
{
for(int i=1;i+len<=n;i++)
{
int j=i+len;
dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1));
}
} printf("%d\n",dp[1][n]);
}
return 0;
}

另外一种写法

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<set>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include<map>
using namespace std;
#define N 2006
int n;
int a[N];
int dp[N][N];
int main()
{
while(scanf("%d",&n)==1)
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]); memset(dp,0,sizeof(dp));
for(int i=n;i>=1;i--)
{
for(int j=i;j<=n;j++)
{
dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1));
}
}
printf("%d\n",dp[1][n]);
}
return 0;
}

poj 3186 Treats for the Cows(区间dp)的更多相关文章

  1. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

  2. poj 3186 Treats for the Cows(dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  3. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  4. POJ3086 Treats for the Cows(区间DP)

    题目链接  Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...

  5. O - Treats for the Cows 区间DP

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast am ...

  6. POJ 3186 Treats for the Cows (动态规划)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  7. Treats for the Cows 区间DP POJ 3186

    题目来源:http://poj.org/problem?id=3186 (http://www.fjutacm.com/Problem.jsp?pid=1389) /** 题目意思: 约翰经常给产奶量 ...

  8. POJ 3186 Treats for the Cows 一个简单DP

    DP[i][j]表示现在开头是i物品,结尾是j物品的最大值,最后扫一遍dp[1][1]-dp[n][n]就可得到答案了 稍微想一下,就可以, #include<iostream> #inc ...

  9. POJ 3186 Treats for the Cows

    简单DP dp[i][j]表示的是i到j这段区间获得的a[i]*(j-i)+... ...+a[j-1]*(n-1)+a[j]*n最大值 那么[i,j]这个区间的最大值肯定是由[i+1,j]与[i,j ...

随机推荐

  1. JavaScript新手学习笔记3——三种排序方式(冒泡排序、插入排序、快速排序)

    每种编程语言学到数组的时候,都会讲到排序算法,当时学C语言的时候,卡在排序算法.今天来总结一下javascript中如何实现三种排序算法. 1.冒泡排序(默认升序排列哦) 原理: 冒泡排序的原理,顾名 ...

  2. [原创作品]Javascript内存管理机制

    如果你也喜欢分享,欢迎加入我们:QQ group:164858883 内存策略:堆内存和栈内存栈内存:在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个 ...

  3. [React Testing] Children with Shallow Rendering

    When testing React components, we often want to make sure the rendered output of the component match ...

  4. Linux字符设备中的两个重要结构体(file、inode)

    对于Linux系统中,一般字符设备和驱动之间的函数调用关系如下图所示 上图描述了用户空间应用程序通过系统调用来调用程序的过程.一般而言在驱动程序的设计中,会关系 struct file 和 struc ...

  5. passwd的使用

    名称:passwd 使用权限:所有使用者 使用方式:passwd [-k] [-l] [-u [-f]] [-d] [-S] [username] 说明:用来更改使用者的密码 参数: -k  keep ...

  6. C#_Socket网络编程实现的简单局域网内即时聊天,发送文件,抖动窗口。

    最近接触了C#Socket网络编程,试着做了试试(*^__^*) 实现多个客户端和服务端互相发送消息 发送文件抖动窗口功能 服务端: using System; using System.Collec ...

  7. 高仿QQ即时聊天软件开发系列之二登录窗口界面

    继上一篇高仿QQ即时聊天软件开发系列之一开端之后,开始做登录窗口 废话不多说,先看效果,只有界面 可能还有一些细节地方没有做,例如那个LOGO嘛,不要在意这些细节 GIF虽短,可是这做起来真难,好吧因 ...

  8. window程序设计1

    int WINAPI WinMain(HINSTANCE HInstance,HINSTANCE HPreInstance,LPSTR szCmdLine,int CmdShown) { Massag ...

  9. Jade学习笔记

    初学nodejs,折腾过用handlebars做模板,后来隔了一段重新学习,用了jade,真心简洁……记录一些学习笔记,以备复习. jade是基于缩进的,所以tab与space不能混用: 属性的设置: ...

  10. 关于ROW_NUMBER函数的使用(The use of ROW_NUMBER function )

    1.用于删除重复记录(The use of to delete the common record) 例子:(Example) #1初始化数据(Initialize the data) CREATE ...