POJ1845 数论 二分快速取余
大致题意:
求A^B的所有约数(即因子)之和,并对其取模 9901再输出。
解题思路:
应用定理主要有三个:
(1) 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2) 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
(3) 同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
有了上面的数学基础,那么本题解法就很简单了:
1: 对A进行素因子分解
分解A的方法:
A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;
当A%2!=0时,则A对下一个连续素数3不断取模...
以此类推,直到A==1为止。
注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。
最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
2:A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
上式加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
上式加粗的前半部分恰好就是原式的一半,依然递归求解
4:反复平方法计算幂次式p^n
这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。
以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}
则sq=256就是所求,显然反复平方法只做了3次乘法
//Memory Time
//336K 0MS #include<iostream>
using namespace std; const int size=;
const int mod=; __int64 sum(__int64 p,__int64 n); //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
__int64 power(__int64 p,__int64 n); //反复平方法求 (p^n)%mod int main(void)
{
int A,B;
int p[size];//A的分解式,p[i]^n[i]
int n[size]; while(cin>>A>>B)
{
int i,k=; //p,n指针 /*常规做法:分解整数A (A为非质数)*/
for(i=;i*i<=A;) //根号法+递归法
{
if(A%i==)
{
p[k]=i;
n[k]=;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==) //奇偶法
i++;
else
i+=;
}
/*特殊判定:分解整数A (A为质数)*/
if(A!=)
{
p[k]=A;
n[k++]=;
} int ans=; //约数和
for(i=;i<k;i++)
ans=(ans*(sum(p[i],n[i]*B)%mod))%mod; //n[i]*B可能会超过int,因此用__int64 cout<<ans<<endl;
}
return ;
} __int64 sum(__int64 p,__int64 n) //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
{ //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
if(n==) //偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)
return ;
if(n%) //n为奇数,
return (sum(p,n/)*(+power(p,n/+)))%mod;
else //n为偶数
return (sum(p,n/-)*(+power(p,n/+))+power(p,n/))%mod;
} __int64 power(__int64 p,__int64 n) //反复平方法求(p^n)%mod
{
__int64 sq=;
while(n>)
{
if(n%)
sq=(sq*p)%mod;
n/=;
p=p*p%mod;
}
return sq;
}
转载自:優YoU http://blog.csdn.net/lyy289065406/article/details/6648539
POJ1845 数论 二分快速取余的更多相关文章
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- 洛谷P1226 【模板】快速幂||取余运算
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...
- LuoguP1226 【模板】快速幂||取余运算
题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...
- hdu1061Rightmost Digit(快速幂取余)
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)
D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...
- 洛谷——P1226 取余运算||快速幂
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod ...
- 洛谷 P1226 取余运算||快速幂
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod ...
- LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)
链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to ...
- Uint47 calculator【map数组+快速积+各种取余公式】
Uint47 calculator 题目链接(点击) In the distant space, there is a technologically advanced planet. One day ...
随机推荐
- Highcharts 基本曲线图
基本曲线图实例 文件名:highcharts_line_basic.htm <html> <head> <meta charset="UTF-8" / ...
- AvalonEdit 移除自身ScrollViewer (可配合外部自定义ScrollViewer 使用)
http://community.sharpdevelop.net/forums/p/11977/42764.aspx#42764 1: <Style TargetType="{x:T ...
- CAEmitterLayer实现粒子效果
在iOS 5中,苹果引入了一个新的CALayer子类叫做CAEmitterLayer.CAEmitterLayer是一个高性能的粒子引擎,被用来创建实时例子动画如:烟雾,火,雨等等这些效果. CAEm ...
- arcpagelistarclist列表分页
arcpagelistarclist列表分页 (DedeCMS 5.6) 名称:arcpagelist 功能:通过制定arclist的pagesize及tagid属性,配合arcpagelist标签进 ...
- sqlserver 2008 sa登陆的一些问题
sqlserver 2008 sa登陆 无法连接到(local)? 遇到这个问题请确保SQL主服务是开启状态: ok接下来把服务器名换成 计算机名\实例名 再次使用sa登陆,如下: 是不是可以了呢? ...
- Java基础知识强化49:10个实用的但偏执的Java编程技术
1. 将String字符串放在最前面 为了防止偶发性的NullPointerException 异常,我们通常将String放置在equals()函数的左边来实现字符串比较,如下代码: // Bad ...
- java基础之导入(药师点评)
/** * 药师点评的导入 * @param request * @param response * @param f * @param tmallTcMessageImport * @return ...
- 深入理解PreparedStatement和Statement
执行SQL语句时,就执行一次使用Statement对象,当一句SQL语句要执行多次,这时使用PrepareStatement.虽然使用PrepareStatement执行一次时非内存,但是,在后来的执 ...
- android 自定义view之 TypeArray
在定义view的时候,我们可以使用系统提供的属性,也可以自定义些额外的属性来设置自定义view的样式,这个时候,我们就需要TypeArray,字面意思就是Type 数组. 今天我们就讲讲如何自定义Vi ...
- Hadoop shuffle与排序
Mapreduce为了确保每个reducer的输入都按键排序.系统执行排序的过程-----将map的输出作为输入传给reducer 称为shuffle.学习shuffle是如何工作的有助于我们理解ma ...