ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)
ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征)
ufldl出了新教程,感觉比之前的好,从基础讲起。系统清晰。又有编程实践。
在deep learning高质量群里面听一些前辈说。不必深究其它机器学习的算法。能够直接来学dl。
于是近期就開始搞这个了。教程加上matlab编程,就是完美啊。
新教程的地址是:http://ufldl.stanford.edu/tutorial/
这里用了conv2来算均值,能够优化性能。
记得。这里不须要激活函数。!!
function convolvedFeatures = cnnConvolve(filterDim, numFilters, images, W, b)
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
% filterDim - filter (feature) dimension
% numFilters - number of feature maps
% images - large images to convolve with, matrix in the form
% images(r, c, image number) % -------------注意维度的位置
% W, b - W, b for features from the sparse autoencoder
% W is of shape (filterDim,filterDim,numFilters)
% b is of shape (numFilters,1)
%
% Returns:
% convolvedFeatures - matrix of convolved features in the form
% convolvedFeatures(imageRow, imageCol, featureNum, imageNum) % ----------注意维度的位置 numImages = size(images, 3);
imageDim = size(images, 1); %行数,即是高度。 这里没算宽度,貌似默认高宽相等。
convDim = imageDim - filterDim + 1; % 卷积后,特征的高度 convolvedFeatures = zeros(convDim, convDim, numFilters, numImages); % Instructions:
% Convolve every filter with every image here to produce the
% (imageDim - filterDim + 1) x (imageDim - filterDim + 1) x numFeatures x numImages
% matrix convolvedFeatures, such that
% convolvedFeatures(imageRow, imageCol, featureNum, imageNum) is the
% value of the convolved featureNum feature for the imageNum image over
% the region (imageRow, imageCol) to (imageRow + filterDim - 1, imageCol + filterDim - 1)
%
% Expected running times:
% Convolving with 100 images should take less than 30 seconds
% Convolving with 5000 images should take around 2 minutes
% (So to save time when testing, you should convolve with less images, as
% described earlier) for imageNum = 1:numImages
for filterNum = 1:numFilters % convolution of image with feature matrix
convolvedImage = zeros(convDim, convDim); % Obtain the feature (filterDim x filterDim) needed during the convolution %%% YOUR CODE HERE %%%
filter = W(:,:,filterNum); % Flip the feature matrix because of the definition of convolution, as explained later
filter = rot90(squeeze(filter),2); %squeeze是把仅仅有一个维度的那一维给去掉。 这里就是把第三维给去掉,三维变二维。 % Obtain the image
im = squeeze(images(:, :, imageNum)); % Convolve "filter" with "im", adding the result to convolvedImage
% be sure to do a 'valid' convolution %%% YOUR CODE HERE %%%
convolvedImage =conv2(im, filter,"valid");%加上valid參数,以下代码不要了。 %conv2Dim = size(convolvedImage,1);
%im_start = (conv2Dim - convDim+2)/2;
%im_end = im_start+convDim-1;
%convolvedImage = convolvedImage(im_start:im_end,im_start:im_end);%取中间部分 % Add the bias unit
% Then, apply the sigmoid function to get the hidden activation %%% YOUR CODE HERE %%%
convolvedImage = convolvedImage.+b(filterNum);
convolvedImage = sigmoid(convolvedImage);
convolvedImage = reshape(convolvedImage,convDim, convDim, 1, 1);%2维变维4维 convolvedFeatures(:, :, filterNum, imageNum) = convolvedImage;
end
end end
function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
%cnnPool Pools the given convolved features
%
% Parameters:
% poolDim - dimension of pooling region
% convolvedFeatures - convolved features to pool (as given by cnnConvolve)
% convolvedFeatures(imageRow, imageCol, featureNum, imageNum)
%
% Returns:
% pooledFeatures - matrix of pooled features in the form
% pooledFeatures(poolRow, poolCol, featureNum, imageNum)
% numImages = size(convolvedFeatures, 4);
numFilters = size(convolvedFeatures, 3);
convolvedDim = size(convolvedFeatures, 1); pooledFeatures = zeros(convolvedDim / poolDim, ...
convolvedDim / poolDim, numFilters, numImages); % Instructions:
% Now pool the convolved features in regions of poolDim x poolDim,
% to obtain the
% (convolvedDim/poolDim) x (convolvedDim/poolDim) x numFeatures x numImages
% matrix pooledFeatures, such that
% pooledFeatures(poolRow, poolCol, featureNum, imageNum) is the
% value of the featureNum feature for the imageNum image pooled over the
% corresponding (poolRow, poolCol) pooling region.
%
% Use mean pooling here. %%% YOUR CODE HERE %%%
filter = ones(poolDim);
for imageNum=1:numImages
for filterNum=1:numFilters
im = squeeze(squeeze(convolvedFeatures(:, :,filterNum,imageNum)));%貌似squeeze不要也能够
pooledImage =conv2(im, filter,"valid");
pooledImage = pooledImage(1:poolDim:end,1:poolDim:end);%取中间部分
pooledImage = pooledImage./(poolDim*poolDim); %pooledImage = sigmoid(pooledImage); %不须要sigmoid
pooledImage = reshape(pooledImage,convolvedDim / poolDim, convolvedDim / poolDim, 1, 1);%2维变维4维 pooledFeatures(:, :, filterNum, imageNum) = pooledImage;
end
end end
版权声明:本文博客原创文章。博客,未经同意,不得转载。
ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)的更多相关文章
- ufldl学习笔记和编程作业:Softmax Regression(softmax回报)
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...
- ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...
- ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)
ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在dee ...
- ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...
- ufldl学习笔记与编程作业:Linear Regression(线性回归)
ufldl学习笔记与编程作业:Linear Regression(线性回归) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些 ...
- 我的学习笔记_Windows_HOOK编程 2009-12-03 11:19
一.什么是HOOK? "hook"这个单词的意思是"钩子","Windows Hook"是Windows消息处理机制的一个重要扩展,程序猿能 ...
- 大数据学习笔记——Hadoop编程实战之Mapreduce
Hadoop编程实战——Mapreduce基本功能实现 此篇博客承接上一篇总结的HDFS编程实战,将会详细地对mapreduce的各种数据分析功能进行一个整理,由于实际工作中并不会过多地涉及原理,因此 ...
- 大数据学习笔记——Hadoop编程实战之HDFS
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程 ...
- 学习笔记之编程珠玑 Programming Pearls
Programming Pearls (2nd Edition): Jon Bentley: 0785342657883: Amazon.com: Books https://www.amazon.c ...
随机推荐
- JS,Jquery - 三元运算符
在javascript中使用三元运算符. 要使用 " [] " ,对运算式进行包裹.
- ThinkPHP - 登录流程
数据库: /* Navicat MySQL Data Transfer Source Server : 本地连接 Source Server Version : 50710 Source Host : ...
- UISearchBar去除底部黑线问题
有时我们在设置搜索框的时候底部会出现一条黑线,要 去除这黑线只需设置. [self.searchBar setBackgroundImage:[UIImage new]];
- VS 2013上Python的配置
最近有点不务正业,去看了下Python (主要是学校OJ有这个语言,然后可以轻松解决大数据问题,不要说我太坑~~~) 目前感觉python和matlab有些类似,缺少了变量类型声明,总感觉自己写出来的 ...
- [Swust OJ 191]--迷宫逃离(打表搜索)
题目链接:http://acm.swust.edu.cn/problem/191/ Time limit(ms): 1000 Memory limit(kb): 65535 江鸟突然想到了一个 ...
- ORACLE存储过程笔记1
ORACLE存储过程笔记1 一.基本语法(以及与informix的比较) create [or replace] procedure procedure_name (varible {IN|OUT ...
- 单实例支撑每天上亿个请求的SSDB
SSDB 是一个 C++ 开发的 NoSQL 存储服务器, 支持 zset, map 数据结构, 可替代 Redis, 特别适合存储集合数据. SSDB 被开发和开源出来后, 已经在生产环境经受了3个 ...
- python 字符串处理
介绍字符串相关的:比较,截取,替换,长度,连接,反转,编码,格式化,查找,复制,大小写,分割等操作 什么是字符串 字符串 字符串或串(String)是由数字.字母.下划线组成的一串字符.一般记为 s= ...
- Android Bluetooth开发
原文地址:http://developer.android.com/guide/topics/wireless/bluetooth.html 翻译:jykenan 更新:2012.06.19 Andr ...
- opencv保存视频
利用opencv提供的方法,从摄像头获取视频,并保存为.avi格式文件. win8.1,opencv248,vs2013下测试 #include<opencv\cv.h> #include ...