http://www.lydsy.com/JudgeOnline/problem.php?id=4033

树形DP。

我们发现,每条边都是一条桥,若我们知道这条边其中一侧有多少个黑点,我们就可以知道这条边产生的费用是多少。

记F[i][j]表示在以i为根的子树中,有j个黑点,其中所有的边产生的费用是多少。

转移用背包。

看上去好像是NK^2的,其实是N^2的。

我们背包中枚举的范围不是0..K,是0..子树大小。

设点u为根的子树的大小为size[u],其实我们在u处枚举的次数大约是size[u]^2。

所以总的就是∑size[i]^2(1<=i<=N),大约是N^2。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define fill(a,l,r,v) fill(a+l,a+r+1,v)
#define re(i,a,b) for(i=(a);i<=(b);i++)
#define red(i,a,b) for(i=(a);i>=(b);i--)
#define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,K;
int now,first[maxN+];
struct Tedge{int v,cost,next;}edge[*maxN+]; inline void addedge(int u,int v,int cost)
{
now++;
edge[now].v=v;
edge[now].cost=cost;
edge[now].next=first[u];
first[u]=now;
} int fa[maxN+],facost[maxN+],size[maxN+]; LL F[maxN+][maxN+]; LL G[maxN+];
inline void DFS(int u)
{
int i,j,k,v,cost;
size[u]=;
for(i=first[u],v=edge[i].v,cost=edge[i].cost;i!=-;i=edge[i].next,v=edge[i].v,cost=edge[i].cost)if(v!=fa[u])
fa[v]=u,facost[v]=cost,DFS(v),size[u]+=size[v]; re(i,,K)F[u][i]=-; G[]=;re(i,,size[u])G[i]=-;
for(i=first[u],v=edge[i].v,cost=edge[i].cost;i!=-;i=edge[i].next,v=edge[i].v,cost=edge[i].cost)if(v!=fa[u])
red(j,min(K,size[u]),)
re(k,,min(j,size[v]))
if(G[j-k]!=- && F[v][k]!=-)
upmax(G[j],G[j-k]+F[v][k]+LL(cost)*LL(k)*LL(K-k)+LL(cost)*LL(size[v]-k)*LL((N-size[v])-(K-k))); re(i,,min(K,size[u]))
{
if(G[i]!=-)upmax(F[u][i],G[i]);
if(i->= && G[i-]!=-) upmax(F[u][i],G[i-]);
} } int main()
{
/*freopen("bzoj4033.in","r",stdin);
freopen("bzoj4033.out","w",stdout);*/
int i,j;
N=gint();K=gint();
now=-;mmst(first,-);
re(i,,N-)
{
int u=gint(),v=gint(),cost=gint();
addedge(u,v,cost);
addedge(v,u,cost);
}
DFS();
cout<<F[][K]<<endl;
return ;
}

bzoj4033的更多相关文章

  1. 【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)

    bzoj4033,懒得复制,戳我戳我 Solution: 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值 然后我们要知道的就是子节点到根节点 ...

  2. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  3. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. 洛谷P3177||bzoj4033 [HAOI2015]树上染色

    洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...

  6. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  7. BZOJ4033 [HAOI2015]T1

    令$f[p][i]$表示以$p$为根的子树内,选了$i$个黑点,剩下的都是白点的这个子树内贡献的答案 如果$p$的子树都算出来了,只要计算$p$与$fa[p]$之间的边对答案的贡献就好了,贡献是$di ...

  8. BZOJ4033 T1

    Description 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0-N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色,并将其他的\(N-K\)个点染成白色.将 ...

  9. bzoj4033(树上染色)

    树上染色 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两 ...

随机推荐

  1. npm 模块安装机制简介

    npm 是 Node 的模块管理器,功能极其强大.它是 Node 获得成功的重要原因之一. 正因为有了npm,我们只要一行命令,就能安装别人写好的模块 . $ npm install 本文介绍 npm ...

  2. ajax弹出窗口

    提取自ZCMS的弹出框: 代替window.open.window.alert.window.confirm:提供良好的用户体验: 水晶质感,设计细腻,外观漂亮: 兼容ie6/7/8.firefox2 ...

  3. C++ primer 中文第三版 阅读笔记 第八章

    一.寄存器对象: 函数中频繁被使用的变量可以加上register就可声明为寄存器对象.对于寄存器对象,假如能够放到寄存器中就会放到寄存器中,放不到的话就放到内存中.比如 register int  a ...

  4. Java学习笔记——JDBC读取properties属性文件

    Java 中的 properties 文件是一种配置文件,主要用于表达配置信息,文件类型为*.properties,格式为文本文件. 文件的内容是格式是"键=值"(key-valu ...

  5. Java基础知识强化48:Java中哈希码

    1.概念:      哈希其实只是一个概念,没有什么真实的指向.它的目的是保证数据均匀的分布到一定的范围内.所以不同数据产生相同的哈希码是完全可以的.      现在是站在JAVA虚拟机的角度来看内存 ...

  6. sql server 系统表系统视图 及作用说明

    sql server 系统视图,可分为: 目录视图   兼容性视图    动态管理视图和函数    信息架构视图    复制视图 系统表: sysaltfiles主数据库 保存数据库的文件 sysch ...

  7. Nginx常见502错误

    1.配置错误因为nginx找不到php-fpm了,所以报错,一般是fastcgi_pass后面的路径配置错误了,后面可以是socket或者是ip:port2.资源耗尽lnmp架构在处理php时,ngi ...

  8. (转)jQuery.extend 函数详解

    Jquery的扩展方法extend是我们在写插件的过程中常用的方法,该方法有一些重载原型,在此,我们一起去了解了解       JQuery的extend扩展方法: Jquery的扩展方法extend ...

  9. Uploadify插件使用方法

    1.下载所需文件 2.导入所需文件,还需要应用jquery.js文件 3.导入css.js uploadify.css.jquery.uploadify.min.js 4.前端代码 p标签存放uplo ...

  10. angularjs某些指令在外部作用域继承并创建新的子作用域引申出的“值复制”与“引用复制”的问题

    <!DOCTYPE html> <html lang="zh-CN" ng-app="app"> <head> <me ...