http://www.lydsy.com/JudgeOnline/problem.php?id=4033

树形DP。

我们发现,每条边都是一条桥,若我们知道这条边其中一侧有多少个黑点,我们就可以知道这条边产生的费用是多少。

记F[i][j]表示在以i为根的子树中,有j个黑点,其中所有的边产生的费用是多少。

转移用背包。

看上去好像是NK^2的,其实是N^2的。

我们背包中枚举的范围不是0..K,是0..子树大小。

设点u为根的子树的大小为size[u],其实我们在u处枚举的次数大约是size[u]^2。

所以总的就是∑size[i]^2(1<=i<=N),大约是N^2。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define fill(a,l,r,v) fill(a+l,a+r+1,v)
#define re(i,a,b) for(i=(a);i<=(b);i++)
#define red(i,a,b) for(i=(a);i>=(b);i--)
#define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,K;
int now,first[maxN+];
struct Tedge{int v,cost,next;}edge[*maxN+]; inline void addedge(int u,int v,int cost)
{
now++;
edge[now].v=v;
edge[now].cost=cost;
edge[now].next=first[u];
first[u]=now;
} int fa[maxN+],facost[maxN+],size[maxN+]; LL F[maxN+][maxN+]; LL G[maxN+];
inline void DFS(int u)
{
int i,j,k,v,cost;
size[u]=;
for(i=first[u],v=edge[i].v,cost=edge[i].cost;i!=-;i=edge[i].next,v=edge[i].v,cost=edge[i].cost)if(v!=fa[u])
fa[v]=u,facost[v]=cost,DFS(v),size[u]+=size[v]; re(i,,K)F[u][i]=-; G[]=;re(i,,size[u])G[i]=-;
for(i=first[u],v=edge[i].v,cost=edge[i].cost;i!=-;i=edge[i].next,v=edge[i].v,cost=edge[i].cost)if(v!=fa[u])
red(j,min(K,size[u]),)
re(k,,min(j,size[v]))
if(G[j-k]!=- && F[v][k]!=-)
upmax(G[j],G[j-k]+F[v][k]+LL(cost)*LL(k)*LL(K-k)+LL(cost)*LL(size[v]-k)*LL((N-size[v])-(K-k))); re(i,,min(K,size[u]))
{
if(G[i]!=-)upmax(F[u][i],G[i]);
if(i->= && G[i-]!=-) upmax(F[u][i],G[i-]);
} } int main()
{
/*freopen("bzoj4033.in","r",stdin);
freopen("bzoj4033.out","w",stdout);*/
int i,j;
N=gint();K=gint();
now=-;mmst(first,-);
re(i,,N-)
{
int u=gint(),v=gint(),cost=gint();
addedge(u,v,cost);
addedge(v,u,cost);
}
DFS();
cout<<F[][K]<<endl;
return ;
}

bzoj4033的更多相关文章

  1. 【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)

    bzoj4033,懒得复制,戳我戳我 Solution: 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值 然后我们要知道的就是子节点到根节点 ...

  2. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  3. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. 洛谷P3177||bzoj4033 [HAOI2015]树上染色

    洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...

  6. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  7. BZOJ4033 [HAOI2015]T1

    令$f[p][i]$表示以$p$为根的子树内,选了$i$个黑点,剩下的都是白点的这个子树内贡献的答案 如果$p$的子树都算出来了,只要计算$p$与$fa[p]$之间的边对答案的贡献就好了,贡献是$di ...

  8. BZOJ4033 T1

    Description 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0-N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色,并将其他的\(N-K\)个点染成白色.将 ...

  9. bzoj4033(树上染色)

    树上染色 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两 ...

随机推荐

  1. android 解析json数据格式

    json数据格式解析我自己分为两种: 一种是普通的,一种是带有数组形式的: 普通形式的:服务器端返回的json数据格式如下: {"userbean":{"Uid" ...

  2. 成都传智播客java就业班和基础班

    传智播客成都Java培训,带你走进Java的世界... 我们有咨询的教育团队,一流的名师指导: 我们是重视基础理论建设,强化高端应用技能: 我们有四大JavaEE项目,海量Android项目: 我们是 ...

  3. codeforces Arrival of the General 题解

    A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command o ...

  4. iOS开发之多媒体API

    播放视频 视频文件介绍 视频格式可以分为适合本地播放的本地影像视频和适合在网络中播放的网络流媒体影像视频两大类.尽管后者在播放的稳定性和播放画面质量上可能没有前者 优秀,但网络流媒体影像视频的广泛传播 ...

  5. Windows下用Caffe跑自己的数据(遥感影像)

    1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下 ...

  6. C++沉思录之三——设计容器类

    一.对容器的基本认识 总的来说,容器应该包含放在其中的对象的副本,而不是对象本身. 二.复制容器意味着什么? 通常将容器成为模板,而容器内的对象的类型就是模板参数.Container<T> ...

  7. Socket 理解

    TCP/IP要想理解socket首先得熟悉一下TCP/IP协议族, TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协 ...

  8. LayoutInflater 原理分析 示例

    LayoutInflater简介        LayoutInflater 顾名思义就是布局填充器,做过Android界面编程,相信对这个类都比较熟悉,可能有人说,我们在activity中使用set ...

  9. Hyper-v虚拟机上网

    Windows 8中内置的Hyper-V管理器可以说给许多人带来了惊喜!在Hyper-V管理器强大的同时,也同样面临着设置中一些不可避免的麻烦.有人说,Hyper-V虚拟机联网麻烦,其实,只要掌握了技 ...

  10. Visual Studio 2015开发Android App问题集锦

    Visual Studio 2015开发Android App 启动调试始终无法完成应用部署的解决方案 创建一个Android App项目后,直接启动调试发现Visual Studio Emulato ...