#并查集,树状数组#洛谷 5610 [Ynoi2013] 大学
分析
设最大值为 \(mx\),考虑每个数最多被除以 \(\log{mx}\) 次,那么加上树状数组的维护为 \(O(n\log{n}\log{mx})\)
问题就是如何快速找到这些位置,可以对于每一个约数单独把合法的数抽出来作为连续的一段用并查集维护。
那么一共需要抽出 \(O(mx\log{mx})\) 个位置,再加上并查集的维护也就是加上一个 \(\log\)。
总时间复杂度为 \(O(mx\log{mx}\log{n}+n\sqrt{mx}+n\log{n}\log{mx})\)。
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=500011; typedef long long lll; lll C[N],lans;
int l[N],r[N],c[N],b[N*40],f[N*40],n,m,mx,a[N];
inline lll iut(){
rr lll ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(lll ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void update(int x,int y){
for (;x<=n;x+=-x&x) C[x]+=y;
}
inline lll query(int l,int r){
rr lll ans=0; --l;
for (;r>l;r-=-r&r) ans+=C[r];
for (;l>r;l-=-l&l) ans-=C[l];
return ans;
}
inline signed getf(int u){return f[u]==u?u:f[u]=getf(f[u]);}
signed main(){
n=iut(); m=iut(),mx=1;
for (rr int i=1;i<=n;++i) a[i]=iut(),C[i]=C[i-1]+a[i];
for (rr int i=1;i<=n;++i)
if (a[i]>1) mx=mx>a[i]?mx:a[i],++c[a[i]];
for (rr int i=n;i;--i) C[i]-=C[i&(i-1)];
for (rr int i=2;i<=mx;++i)
for (rr int j=i+i;j<=mx;j+=i)
c[i]+=c[j];
for (rr int i=2,lst=0;i<=mx;++i) if (c[i]){
l[i]=lst+1,r[i]=l[i]+c[i]-1,lst=r[i],c[i]=0;
for (rr int j=l[i];j<=r[i];++j) f[j]=j;
}
for (rr int i=1;i<=n;++i)
if (a[i]>1){
b[l[a[i]]+c[a[i]]]=i,++c[a[i]];
for (rr int j=2;j*j<=a[i];++j)
if (a[i]%j==0){
b[l[j]+c[j]]=i,++c[j];
if (j*j<a[i]) b[l[a[i]/j]+c[a[i]/j]]=i,++c[a[i]/j];
}
}
for (rr int i=1;i<=m;++i){
rr int opt=iut();
rr int L=iut()^lans,R=iut()^lans;
if (opt==2) print(lans=query(L,R)),putchar(10);
else{
rr int x=iut()^lans;
if (x<2||x>mx||!c[x]) continue;
L=lower_bound(b+l[x],b+1+r[x],L)-b;
R=upper_bound(b+l[x],b+1+r[x],R)-b-1;
if (L>r[x]||L>R) continue;
for (rr int now=getf(L);now<=R;now=getf(now+1)){
if (a[b[now]]%x==0) update(b[now],a[b[now]]/x-a[b[now]]),a[b[now]]/=x;
if (now==R) break;
if (a[b[now]]%x) f[now]=getf(now+1);
}
}
}
return 0;
}
#并查集,树状数组#洛谷 5610 [Ynoi2013] 大学的更多相关文章
- BZOJ-3211花神游历各国 并查集+树状数组
一开始想写线段树区间开方,简单暴力下,但觉得变成复杂度稍高,懒惰了,编了个复杂度简单的 3211: 花神游历各国 Time Limit: 5 Sec Memory Limit: 128 MB Subm ...
- BZOJ3211 花神游历各国 并查集 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3211 题意概括 有n个数形成一个序列. m次操作. 有两种,分别是: 1. 区间开根(取整) 2. ...
- hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)
hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...
- 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组
题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...
- HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...
- la4730(并查集+树状数组)
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=30& ...
- 【BZOJ3211】花神游历各国 并查集+树状数组
[BZOJ3211]花神游历各国 Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 41 100 5 551 1 22 1 ...
- HDU 4750 Count The Pairs ★(图+并查集+树状数组)
题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
- Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)
题目链接: Hdu 5458 Stability 题目描述: 给出一个还有环和重边的图G,对图G有两种操作: 1 u v, 删除u与v之间的一天边 (保证这个边一定存在) 2 u v, 查询u到v的路 ...
随机推荐
- C++ 指针的错误释放
错误代码: #include <iostream> int main() { int* ptr = (int*)malloc(4); int i = 1111; ptr = &i; ...
- Flutter学习
常用网址 免费下载 !<AliFlutter 体系化建设和实践> Flutter 开发文档 Flutter实战 Dart 编程语言概览 pub仓库 main函数使用了(=>)符号, ...
- 狂神说Git学习笔记整理
Git 版本控制 在开发过程中,项目会进行版本迭代,新版本会取代旧版本,但是我们不希望直接删除旧版本,所以就需要一个版本管理器来管理新旧版本,不然就是手动控制... 多人开发必须使用版本控制!!! ...
- CoaXPress 协议的CRC及其具体实现
CoaXPress CRC 在CXP协议中,CRC用在stream packet和control packet中,用于指示数据是否错误,如果是control packet, device发现CRC错误 ...
- 【Azure Redis 缓存】Redis导出数据文件变小 / 在新的Redis复原后数据大小压缩近一倍问题分析
问题描述 使用 Azure Cache for Redis 服务,在两个Redis服务之间进行数据导入和导出测试.在Redis中原本有7G的数据值,但是导出时候发现文件大小仅仅只有30MB左右,这个压 ...
- 机器学习可解释性--shapvalue
A Unified Approach to Interpreting Model Predictions trusting a prediction or trusting a model 如果⼀个机 ...
- 好用网址分享-77ai导航与77搜索导航
AI(人工智能)技术正在改变我们的生活方式和工作方式,越来越多的人开始关注和使用AI相关的网站和应用程序.在这篇文章中,我将为大家介绍一些常用的AI网址导航,帮助您更好地了解和使用AI技术. AI H ...
- 解决网页无法复制粘贴选中的问题 显示vip无法复制解决方案
方法:先是按F12打开控制台点击console输入以下代码!!!! 解决网页禁止鼠标右键,无法被选中的 第一种: javascript:(function() { function R(a){ona ...
- 内存缓存 Gcache VS Caffeine源码详解
转一篇.后续再尝试自己实践一下
- PRD(产品需求文档)与SRS(软件需求规格说明书)的区别
需求分析是软件开发过程中很重要的一个环节,目前需求分析完成后输出的文档有2种体系,一个是SRS(Software Requirements Specification,软件需求规格说明书),一个是PR ...