一个神经网络的输出

首先,回顾下只有一个隐藏层的简单两层神经网络结构

图1.3.1

其中,\(x\)表示输入特征,\(a\)表示每个神经元的输出,\(W\)表示特征的权重,上标表示神经网络的层数(隐藏层为1),下标表示该层的第几个神经元。这是神经网络的符号惯例,下同。

神经网络的计算

关于神经网络是怎么计算的,从之前提及的逻辑回归开始,如下图所示。用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤,首先按步骤计算出\(z\),然后在第二步中以sigmoid函数为激活函数计算\(z\)(得出\(a\)),一个神经网络只是这样子做了好多次重复计算。

图1.3.2

回到两层的神经网络,从隐藏层的第一个神经元开始计算,如上图第一个最上面的箭头所指。从上图可以看出,输入与逻辑回归相似,这个神经元的计算与逻辑回归一样分为两步,小圆圈代表了计算的两个步骤。

第一步,计算\(z^{[1]}_1,z^{[1]}_1 = w^{[1]T}_1x + b^{[1]}_1\)。

第二步,通过激活函数计算\(a^{[1]}_1,a^{[1]}_1 = \sigma(z^{[1]}_1)\)。

隐藏层的第二个以及后面两个神经元的计算过程一样,只是注意符号表示不同,最终分别得到\(a^{[1]}_2、a^{[1]}_3、a^{[1]}_4\),详细结果见下:

\(z^{[1]}_1 = w^{[1]T}_1x + b^{[1]}_1, a^{[1]}_1 = \sigma(z^{[1]}_1)\)

\(z^{[1]}_2 = w^{[1]T}_2x + b^{[1]}_2, a^{[1]}_2 = \sigma(z^{[1]}_2)\)

\(z^{[1]}_3 = w^{[1]T}_3x + b^{[1]}_3, a^{[1]}_3 = \sigma(z^{[1]}_3)\)

\(z^{[1]}_4 = w^{[1]T}_4x + b^{[1]}_4, a^{[1]}_4 = \sigma(z^{[1]}_4)\)

向量化计算

如果执行神经网络的程序,用for循环来做这些看起来真的很低效。所以接下来要做的就是把这四个等式向量化。向量化的过程是将神经网络中的一层神经元参数纵向堆积起来,例如隐藏层中的\(w\)纵向堆积起来变成一个\((4,3)\)的矩阵,用符号\(W^{[1]}\)表示。另一个看待这个的方法是有四个逻辑回归单元,且每一个逻辑回归单元都有相对应的参数——向量\(w\),把这四个向量堆积在一起,会得出这4×3的矩阵。

因此,

公式1.8:

\(z^{[n]} = w^{[n]}x + b^{[n]}\)

公式1.9:

\(a^{[n]}=\sigma(z^{[n]})\)

详细过程见下:

公式1.10:

\[a^{[1]} =
\left[
\begin{array}{c}
a^{[1]}_{1}\\
a^{[1]}_{2}\\
a^{[1]}_{3}\\
a^{[1]}_{4}
\end{array}
\right]
= \sigma(z^{[1]})
\]

公式1.11:

\[\left[
\begin{array}{c}
z^{[1]}_{1}\\
z^{[1]}_{2}\\
z^{[1]}_{3}\\
z^{[1]}_{4}\\
\end{array}
\right]
=
\overbrace{
\left[
\begin{array}{c}
...W^{[1]T}_{1}...\\
...W^{[1]T}_{2}...\\
...W^{[1]T}_{3}...\\
...W^{[1]T}_{4}...
\end{array}
\right]
}^{W^{[1]}}
*
\overbrace{
\left[
\begin{array}{c}
x_1\\
x_2\\
x_3\\
\end{array}
\right]
}^{input}
+
\overbrace{
\left[
\begin{array}{c}
b^{[1]}_1\\
b^{[1]}_2\\
b^{[1]}_3\\
b^{[1]}_4\\
\end{array}
\right]
}^{b^{[1]}}
\]

对于神经网络的第一层,给予一个输入\(x\),得到\(a^{[1]}\),\(x\)可以表示为\(a^{[0]}\)。通过相似的衍生会发现,后一层的表示同样可以写成类似的形式,得到\(a^{[2]}\),\(\hat{y} = a^{[2]}\),具体过程见公式1.8、1.9。

图1.3.3

如上图左半部分所示为神经网络,把网络左边部分盖住先忽略,那么最后的输出单元就相当于一个逻辑回归的计算单元。当有一个包含一层隐藏层的神经网络,需要去实现以计算得到输出的是右边的四个等式,并且可以看成是一个向量化的计算过程,计算出隐藏层的四个逻辑回归单元和整个隐藏层的输出结果,如果编程实现需要的也只是这四行代码。

总结

通过本篇博客,读者应该可以能够根据给出的一个单独的输入特征向量,运用四行代码计算出一个简单神经网络的输出。接下来将了解的是如何一次能够计算出不止一个样本的神经网络输出,而是能一次性计算整个训练集的输出。

神经网络入门篇:详解计算一个神经网络的输出(Computing a Neural Network's output)的更多相关文章

  1. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. java 日志体系(三)log4j从入门到详解

    java 日志体系(三)log4j从入门到详解 一.Log4j 简介 在应用程序中添加日志记录总的来说基于三个目的: 监视代码中变量的变化情况,周期性的记录到文件中供其他应用进行统计分析工作: 跟踪代 ...

  4. (3)lscpu详解 (每周一个linux命令系列)

    (3)lscpu详解 (每周一个linux命令系列) linux命令 lscpu详解 引言:今天的命令是用来看cpu信息的lscpu lscpu 我们先看man lscpu display infor ...

  5. (十八)整合Nacos组件,环境搭建和入门案例详解

    整合Nacos组件,环境搭建和入门案例详解 1.Nacos基础简介 1.1 关键特性 1.2 专业术语解释 1.3 Nacos生态圈 2.SpringBoot整合Nacos 2.1 新建配置 2.2 ...

  6. 详解计算miou的代码以及混淆矩阵的意义

    详解计算miou的代码以及混淆矩阵的意义 miou的定义 ''' Mean Intersection over Union(MIoU,均交并比):为语义分割的标准度量.其计算两个集合的交集和并集之比. ...

  7. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  8. (5)ps详解 (每周一个linux命令系列)

    (5)ps详解 (每周一个linux命令系列) linux命令 ps详解 引言:今天的命令是用来看进程状态的ps命令 ps 我们先看man ps ps - report a snapshot of t ...

  9. (4)top详解 (每周一个linux命令系列)

    (4)top详解 (每周一个linux命令系列) linux命令 top详解 引言:今天的命令是用来看cpu信息的top top 我们先看man top top - display Linux pro ...

  10. (2)free详解 (每周一个linux命令系列)

    (2)free详解 (每周一个linux命令系列) linux命令 free详解 引言:今天的命令是用来看内存的free free 换一个套路,我们先看man free中对free的描述: Displ ...

随机推荐

  1. DDD架构为什么应该首选六边形架构?

    一.传统分层架构 分层架构的一个重要原则是:每层只能与位于其下方的层发生耦合. 分层架构分两种:一种是严格分层架构,规定某层只能与直接位于其下方的层发生耦合:另一种是松散分层架构,允许任意上方层与任意 ...

  2. [爬虫]3.4.1 Scrapy框架的基本使用

    Scrapy是一款强大的Python网络爬虫框架,它可以帮助你快速.简洁地编写爬虫程序,处理数据抓取.处理和存储等复杂问题. 1. 安装Scrapy 在开始使用Scrapy之前,你需要先将其安装在你的 ...

  3. win10安装mysql-8.0.19-winx64

    第一步:去官网下载安装 (重点)第二步:先解压,然后在mysql下创建一个my.ini文件,更改my.ini文件里面的两行安装目录,第二行加上\data,my.ini文件不能多或少一个符号,内容见文章 ...

  4. excel 启用迭代计算

    迭代,即计算程序中一组指令的重复.在Excel中有些公式需要启用迭代计算,才能正常运算. 注:公式直接或间接引用自身单元格,会导致计算结果不正确,可以尝试使用该方法解决.所愿单元格的初始值都为0. 参 ...

  5. Windows安装hexo并配置nginx

    前言 Hexo是一款基于NodeJS的静态博客框架,依赖少且易于安装使用,可以方便地生成静态网页. 本文记录Windows安装hexo,配置第三方主题Fluid,并配置nginx的全过程. nodej ...

  6. C#程序配置读写例子 - 开源研究系列文章

    今天讲讲关于C#的配置文件读写的例子. 对于应用程序的配置文件,以前都是用的ini文件进行读写的,这个与现在的json类似,都是键值对应的,这次介绍的是基于XML的序列化和反序列化的读写例子.对于in ...

  7. 7、Mybatis之特殊SQL

    7.1 创建接口.映射文件和测试类 ++++++++++++++++++++++++++分割线++++++++++++++++++++++++++ 注意namespace属性值为对应接口的全限定类名 ...

  8. Minio 安装部署

    minio 入门 简介 简介 自己看官网 https://min.io/docs/minio/kubernetes/upstream/ 安装部署 (1)Linux服务器安装 minio 可以采用以下几 ...

  9. Linux文件管理知识查找文件(第二篇)

    Linux文件管理知识:查找文件(第二篇) 上篇文章详细介绍了linux系统中查找文件的工具或者命令程序locate和find命令的基本操作.那么,今天这篇文章紧接着查找文件相关操作内容介绍. Fin ...

  10. API接口设计规范,看这篇就足以了

    ​ 优秀的设计是产品变得卓越的原因.设计API意味着提供有效的接口,可以帮助API使用者更好地了解.使用和集成,同时帮助人们有效地维护它.每个产品都需要使用手册,API也不例外. 在API领域,可以将 ...