如果询问 \(x_1, y_1, x_2, y_2\),

那么询问

\((x_2, y_2)\),

\((x_2, y_1 - 1)\),

\((x_1 - 1, y_2)\)

\((x_1 - 1, y_1 - 1\)),

这些点到原点(不一定是 \((0, 0)\),有可能有负数)的和。

设其结果分别为 \(a, b, c, d\),那么最后结果为 \(a - b - c + d\)(二维前缀和原理)。

问题成功转化。


设结构体

struct Node {
int x, y; // 位置
int z; // 值
};

为基本信息。

我们在此基础上加一个 \(type\) 和 \(res\),

如果 \(type\) 为 \(1\) 就表示要询问 \((x, y)\) 的二维前缀和,结果保存在 \(res\) 中。

如果 \(type\) 为 \(0\) 表示 \((x, y)\) 为一个基站,其功率为 \(z\)。


对于 \(type_i\) 为 \(1\) 的部分,

使用CDQ分治统计:

\(type_j < type_i\) (即 \(type_j\) 为 \(0\))

\(x_j \leq x_i\)

\(y_j \leq y_i\)

的各个位置的和即可。

注意开long long

#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map> #define int long long using namespace std; const int N = 500010; struct Node {
int x, y, z;
int type;
int res;
}a[N], tmp[N]; bool cmp(const Node a, const Node b) {
if (a.x != b.x) return a.x < b.x;
if (a.y != b.y) return a.y < b.y;
return a.type < b.type;
} int n, m; void cdq(int l, int r) {
if (l == r) return;
int mid = (l + r) / 2;
cdq(l, mid);
cdq(mid + 1, r); int sum = 0; int p = l, q = mid + 1, tot = l;
while (p <= mid && q <= r) {
if (a[p].y <= a[q].y) {
if (!a[p].type) sum += a[p].z;
tmp[tot++] = a[p++];
}
else {
if (a[q].type) a[q].res += sum;
tmp[tot++] = a[q++];
}
}
while (p <= mid) {
if (!a[p].type) sum += a[p].z;
tmp[tot++] = a[p++];
}
while (q <= r) {
if (a[q].type) a[q].res += sum;
tmp[tot++] = a[q++];
}
for (int i = l; i <= r; i++) a[i] = tmp[i];
} struct Query {
int x1, y1;
int x2, y2;
}query[N]; unordered_map<int, unordered_map<int, int> > res_a; signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i].x >> a[i].y >> a[i].z;
a[i].type = 0;
a[i].res = 0;
}
int tot = n;
for (int i = 1; i <= m; i++) {
cin >> query[i].x1 >> query[i].y1 >> query[i].x2 >> query[i].y2;
a[++tot] = {query[i].x1 - 1, query[i].y1 - 1, 0, 1, 0};
a[++tot] = {query[i].x2, query[i].y2, 0, 1, 0};
a[++tot] = {query[i].x2, query[i].y1 - 1, 0, 1, 0};
a[++tot] = {query[i].x1 - 1, query[i].y2, 0, 1, 0};
}
sort(a + 1, a + tot + 1, cmp);
cdq(1, tot);
for (int i = 1; i <= tot; i++) {
if (a[i].type) {
res_a[a[i].x][a[i].y] = a[i].res;
}
}
for (int i = 1; i <= m; i++) {
int x1 = query[i].x1, y1 = query[i].y1;
int x2 = query[i].x2, y2 = query[i].y2; int ans = res_a[x2][y2] - res_a[x2][y1 - 1] - res_a[x1 - 1][y2] + res_a[x1 - 1][y1 - 1];
cout << ans << '\n';
}
return 0;
}

P3755 [CQOI2017]老C的任务题解的更多相关文章

  1. P3755 [CQOI2017]老C的任务

    传送门 可以离线,把询问拆成四个,然后把所有的按\(x\)坐标排序,这样就只要考虑\(y\)坐标了.然后把\(y\)坐标离散化,用树状数组统计即可 记得开longlong //minamoto #in ...

  2. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  3. 【BZOJ4822】[CQOI2017]老C的任务(扫描线)

    [BZOJ4822][CQOI2017]老C的任务(扫描线) 题面 BZOJ 洛谷 题解 没有修改操作,都不需要分治了... 直接排序之后扫描线算贡献就好了... 不知道为啥洛谷上过不了... #in ...

  4. bzoj4823: [Cqoi2017]老C的方块(最小割)

    4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强   黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...

  5. 【BZOJ4823】[CQOI2017]老C的方块(网络流)

    [BZOJ4823][CQOI2017]老C的方块(网络流) 题面 BZOJ 题解 首先还是给棋盘进行黑白染色,然后对于特殊边左右两侧的格子单独拎出来考虑. 为了和其他格子区分,我们把两侧的这两个格子 ...

  6. bzoj 4822: [Cqoi2017]老C的任务

    4822: [Cqoi2017]老C的任务 练手速... #include <iostream> #include <cstdio> #include <cstring& ...

  7. bzoj 4823: [Cqoi2017]老C的方块 [最小割]

    4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...

  8. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  9. [BZOJ4822][CQOI2017]老C的任务(扫描线+树状数组)

    4822: [Cqoi2017]老C的任务 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 379  Solved: 203[Submit][Statu ...

  10. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

随机推荐

  1. Yapi及Swgger使用+注解

    1.Yapi 1.1 介绍 YApi 是高效.易用.功能强大的 api 管理平台,旨在为开发.产品.测试人员提供更优雅的接口管理服务.可以帮助开发者轻松创建.发布.维护 API,YApi 还为用户提供 ...

  2. 17-js代码压缩

    const { resolve } = require('path'); const HtmlWebpackPlugin = require('html-webpack-plugin'); modul ...

  3. Tars-Cpp 协程实现分析

    作者:vivo 互联网服务器团队- Ye Feng 本文介绍了协程的概念,并讨论了 Tars Cpp 协程的实现原理和源码分析. 一.前言 Tars 是 Linux 基金会的开源项目(https:// ...

  4. 【leetcode】258. 各位相加

    [leetcode]258. 各位相加 C++解法: class Solution { public: int addDigits(int num) { string s;//用来将num转换成字符串 ...

  5. 2022-10-04:以下go语言代码输出什么?A:{123} main.T{x:123} B:{123} T{x:123} C:boo boo D:boo main.T{x:123}。 packag

    2022-10-04:以下go语言代码输出什么?A:{123} main.T{x:123} B:{123} T{x:123} C:boo boo D:boo main.T{x:123}. packag ...

  6. 2022-06-22:golang选择题,以下golang代码输出什么?A:3;B:1;C:4;D:编译失败。 package main import ( “fmt“ ) func mai

    2022-06-22:golang选择题,以下golang代码输出什么?A:3:B:1:C:4:D:编译失败. package main import ( "fmt" ) func ...

  7. 2022-01-20: 矩形区域不超过 K 的最大数值和。 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。 题目数据保证总会存在一

    2022-01-20: 矩形区域不超过 K 的最大数值和. 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和. 题目数据保证总会存在一 ...

  8. drf-spectacular

    介绍 drf-spectacular是为Django REST Framework生成合理灵活的OpenAPI 3.0模式.它可以自动帮我们提取接口中的信息,从而形成接口文档,而且内容十分详细,再也不 ...

  9. Django4全栈进阶之路20 项目实战(在线报修):项目需求分析

    为了实现一个在线报修系统,您可以按照以下步骤进行: 创建Django项目和应用 使用Django的命令行工具创建一个Django项目,并在该项目中创建一个名为"RepairApp" ...

  10. for循环原理补充、生成器对象、yield冷门用法、生成器表达式的面试题、常见内置函数

    目录 一.for循环原理补充 二.生成器对象 (1).自定义生成器对标range功能(一个参数 两个参数 三个参数 迭代器对象) 三.yield冷门用法 (1).yield与return的对比 四.生 ...