Problem Statement

You are given a tuple of $N$ non-negative integers $A=(A_1,A_2,\ldots,A_N)$ such that $A_1=0$ and $A_N>0$.

Takahashi has $N$ counters. Initially, the values of all counters are $0$.

He will repeat the following operation until, for every $1\leq i\leq N$, the value of the $i$-th counter is at least $A_i$.

Choose one of the $N$ counters uniformly at random and set its value to $0$. (Each choice is independent of others.)

Increase the values of the other counters by $1$.

Print the expected value of the number of times Takahashi repeats the operation, modulo $998244353$ (see Notes).

Notes

It can be proved that the sought expected value is always finite and rational. Additionally, under the Constraints of this problem, when that value is represented as $\frac{P}{Q}$ using two coprime integers $P$ and $Q$, one can prove that there is a unique integer $R$ such that $R \times Q \equiv P\pmod{998244353}$ and $0 \leq R \lt 998244353$. Find this $R$.

Constraints

  • $2\leq N\leq 2\times 10^5$
  • $0=A_1\leq A_2\leq \cdots \leq A_N\leq 10^{18}$
  • $A_N>0$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print the expected value of the number of times Takahashi repeats the operation, modulo $998244353$.


Sample Input 1

2
0 2

Sample Output 1

6

Let $C_i$ denote the value of the $i$-th counter.

Here is one possible progression of the process.

  • Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,1)$.
  • Set the value of the $2$-nd counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(1,0)$.
  • Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,1)$.
  • Set the value of the $1$-st counter to $0$, and then increase the value of the other counter by $1$. Now, $(C_1,C_2)=(0,2)$.

In this case, the operation is performed four times.

The probabilities that the process ends after exactly $1,2,3,4,5,\ldots$ operation(s) are $0,\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{3}{32},\ldots$, respectively, so the sought expected value is $2\times\frac{1}{4}+3\times\frac{1}{8}+4\times\frac{1}{8}+5\times\frac{3}{32}+\dots=6$.
Thus, $6$ should be printed.


Sample Input 2

5
0 1 3 10 1000000000000000000

Sample Output 2

874839568

概率生成函数做法,下面以 \('\) 表示求导

放几个求导公式先。

\[(f*g)'(x)=f'*g(x)+f*g'(x)
\]
\[\frac {f(x)}{g(x)}=\frac{f'*g(x)-f*g'(x)}{g^2(x)}
\]

设最终的概率生成函数为 \(H(x)\),\(H(x)=\frac{F(x)}{G(x)}\),F表示 \(0\) 时刻 \(A\) 全为 0,在 \(i\) 时刻符合要求的概率,\(G\) 表示 \(0\) 时刻满足要求,在 \(i\) 时刻满足要求的概率。这是因为 \(G*H=F\),很容易理解。根据生成函数的经典结论,\(H'(1)\) 为最终答案。

那么 \(F\) 和 \(G\) 是可以求出来的。先看 F,一种操作序列满足要求的前提是操作序列长度至少为 \(a_n\) 且最后 \(a_i\) 次操作没有弄 \(i\)。

我们需要知道如果从某个时刻开始形成 \(A_i\),那么生成从出来的概率是多少。那么有 \(a_{i+1}-a_i\) 个时刻,生成出来的概率是 \(\frac in\)。那么定义 \(s_i=\prod_{j<i}(\frac jn)^{a_{j+1}-a_j}\),可以用一个前缀积求出。 F 就是从任意大于 \(a_n\) 的时刻都有 \(s_i\) 的概率成功,\(F(x)=s_n(x_{a_n}+x_{a_n+1}+\cdots)=\frac{s_nx^n}{1-x}\)

那么 G 的生成函数呢? G 和 F 的区别是他不一定需要 \(a_n\) 时刻才能满足,它可以只用 \(a_i\) 时刻,重构前面 \(i\) 个数。这里设时刻 \(a_i]\le j<a_{i+1}\),那么 \(j\) 时刻开始的概率就是 \(s_i(\frac in)^{j-a_i}\),用一个等比数列求和,这里省略一下过程,得到 \(g(x)=\frac{s_nx^{a_n}}{1-x}+\sum\limits_{i=1}^{n-1}n\frac{s_ix^{a_i}-s_{i+1}x^{a_{i+1}}}{n-ix}\)

然后求导,发现两个函数中 1 处的取值都是没有意义的,但是把 \(F\) 和 \(G\) 同乘 \((1-x)\)即可。后面的 F 和 G 都是乘了 \(1-x\) 之后的。\(F(1)=s_n,F'(1)=s_na_n,G(1)=s_n\)(后面的乘上 (1-x)) 后,带入 \(x=1\) 全部消掉。那么现在重点来推 \(G'(1)\)

现在要求 \(\frac{n(s_ix^{a_i}-s_{i+1}x^{a_{i+1}})(1-x)}{n-ix}\) 的导数,下面平方后出来 \((n-ix)^2=(n-i)^2\),方便起见,设 \((1-x)=A(x),s_{i}x^{a_i}-s_{i+1}x^{a_{i+1}}=B(x)\),则 \((nA*B)'(1)=n(A'*B(1)+A*B'(1))\),发现 \(A(1)=0\),那么最终式子简化问 \(nA'*B(1)=-ns_{i}+ns_{i+1}\)。\(n-ix\) 求导为 \(-i\),那么最终式子就是 \(\frac{n(s_{i+1}-s_i)(n-i)}{(n-i)^2}=\frac{n(s_{i+1}-s_i)}{n-i}\)

最后套除法求导公式就行了

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5,P=998244353;
typedef long long LL;
int n,g,f,fp,gp,fd,s[N];
LL a[N];
int pown(int x,LL y)
{
if(!y)
return 1;
int t=pown(x,y>>1);
if(y&1)
return 1LL*t*t%P*x%P;
return 1LL*t*t%P;
}
int main()
{
scanf("%d",&n);
s[0]=s[1]=1;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
if(i^1)
s[i]=1LL*s[i-1]*pown((i-1LL)*pown(n,P-2)%P,a[i]-a[i-1])%P;
}
fp=s[n]*1LL*(a[n]%P)%P;
f=s[n];
g=s[n],gp=s[n]*1LL*(a[n]%P)%P;
for(int i=1;i<n;i++)
(gp+=pown(n-i,P-2)*1LL*n%P*(s[i+1]-s[i]+P)%P)%=P;
printf("%lld",(fp*1LL*g%P-gp*1LL*f%P+P)*pown(g*1LL*g%P,P-2)%P);
}

[ABC270Ex] add 1的更多相关文章

  1. AutoMapper:Unmapped members were found. Review the types and members below. Add a custom mapping expression, ignore, add a custom resolver, or modify the source/destination type

    异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 应用场景:ViewModel==>Mode映射的时候出错 AutoMappe ...

  2. EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解

    前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...

  3. ASP.NET Core: You must add a reference to assembly mscorlib, version=4.0.0.0

    ASP.NET Core 引用外部程序包的时候,有时会出现下面的错误: The type 'Object' is defined in an assembly that is not referenc ...

  4. [转]NopCommerce How to add a menu item into the administration area from a plugin

    本文转自:http://docs.nopcommerce.com/display/nc/How+to+code+my+own+shipping+rate+computation+method Go t ...

  5. [deviceone开发]-动态添加组件add方法的示例

    一.简介 这个示例详细介绍ALayout的add方法的使用(原理也适用于Linearlayout),以及add上去的新ui和已有的ui如何数据交换,初学者推荐.二.效果图 三.相关下载 https:/ ...

  6. [LeetCode] Add Two Numbers II 两个数字相加之二

    You are given two linked lists representing two non-negative numbers. The most significant digit com ...

  7. [LeetCode] Add Strings 字符串相加

    Given two non-negative numbers num1 and num2 represented as string, return the sum of num1 and num2. ...

  8. [LeetCode] Expression Add Operators 表达式增加操作符

    Given a string that contains only digits 0-9 and a target value, return all possibilities to add ope ...

  9. [LeetCode] Add Digits 加数字

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  10. [LeetCode] Different Ways to Add Parentheses 添加括号的不同方式

    Given a string of numbers and operators, return all possible results from computing all the differen ...

随机推荐

  1. 淘宝详情api接口的使用说明

    淘宝详情API接口是一种可以用来获取淘宝商品详细信息的服务,包括图片.标题.价格.销量.评论等数据.下面是淘宝详情API接口的使用说明: 1.关于申请API接口权限: 在使用淘宝详情API接口前,需要 ...

  2. QA|requests接口请求失败而postman请求成功原因排查|Requests

    requests接口请求失败而postman请求成功原因 代码如下 1 def ihrm_login(login_data, url1): 2 """login_data ...

  3. .NET C#基础(9):资源释放 - 需要介入的资源管理

    1. 什么是IDisposable?   IDisposable接口是一个用于约定可进行释放资源操作的接口,一个类实现该接口则意味着可以使用接口约定的方法Dispose来释放资源.其定义如下: pub ...

  4. docker入门加实战—Docker镜像和Dockerfile语法

    docker入门加实战-Docker镜像和Dockerfile语法 镜像 镜像就是包含了应用程序.程序运行的系统函数库.运行配置等文件的文件包.构建镜像的过程其实就是把上述文件打包的过程. 镜像结构 ...

  5. [Python]对称日!

    def check(year): if (year%4 == 0 and year%100 != 0) or year%400 == 0: return True else: return False ...

  6. Intellij13 IDEA常用快捷键 (mac 10.5 +),优化,使用出现的问题汇总

    http://blog.csdn.net/xiaohulunb/article/details/20729261

  7. JAVA异常的不正确处理方式

    最近收到一个求助信息,异常堆栈如下: ``` java.lang.RuntimeException: FF1C1005 at test_ssh.sftp.Pool.get(Pool.java:25) ...

  8. JavaScript 语法:语法约定与程序调试

    作者:WangMin 格言:努力做好自己喜欢的每一件事 JavaScript 语法约定 1.大小写的区分 1). JavaScript的关键字,永远都是小写的: 2). 内置对象,如Math和Date ...

  9. STM32 定时器时钟配置技巧

    众所周知 STM32 的时钟配置比较复杂,而定时器的时钟配置更是 '奇葩'. 如下图(截图自STM32F4编程手册)APB的预分频器分频系数如果不为1,则定时器的时钟就倍频了反而. 配置技巧 下面以S ...

  10. RLHF · PBRL | RUNE:鼓励 agent 探索 reward model 更不确定的 (s,a)

    论文题目: Reward uncertainty for exploration in preference-based reinforcement learning,是 ICLR 2022 的文章, ...