Problem Statement

You are given a simple connected undirected graph with $N$ vertices and $M$ edges. (A graph is said to be simple if it has no multi-edges and no self-loops.)

For $i = 1, 2, \ldots, M$, the $i$-th edge connects Vertex $u_i$ and Vertex $v_i$.

A sequence $(A_1, A_2, \ldots, A_k)$ is said to be a path of length $k$ if both of the following two conditions are satisfied:

  • For all $i = 1, 2, \dots, k$, it holds that $1 \leq A_i \leq N$.
  • For all $i = 1, 2, \ldots, k-1$, Vertex $A_i$ and Vertex $A_{i+1}$ are directly connected with an edge.

An empty sequence is regarded as a path of length $0$.

You are given a sting $S = s_1s_2\ldots s_N$ of length $N$ consisting of $0$ and $1$.
A path $A = (A_1, A_2, \ldots, A_k)$ is said to be a good path with respect to $S$ if the following conditions are satisfied:

  • For all $i = 1, 2, \ldots, N$, it holds that:
    • if $s_i = 0$, then $A$ has even number of $i$'s.
    • if $s_i = 1$, then $A$ has odd number of $i$'s.

Under the Constraints of this problem, it can be proved that there is at least one good path with respect to $S$ of length at most $4N$.
Print a good path with respect to $S$ of length at most $4N$.

Constraints

  • $2 \leq N \leq 10^5$
  • $N-1 \leq M \leq \min\lbrace 2 \times 10^5, \frac{N(N-1)}{2}\rbrace$
  • $1 \leq u_i, v_i \leq N$
  • The given graph is simple and connected.
  • $N, M, u_i$, and $v_i$ are integers.
  • $S$ is a string of length $N$ consisting of $0$ and $1$.

Input

Input is given from Standard Input in the following format:

$N$ $M$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_M$ $v_M$
$S$

Output

Print a good path with respect to $S$ of length at most $4N$ in the following format.
Specifically, the first line should contain the length $K$ of the path, and the second line should contain the elements of the path, with spaces in between.

$K$
$A_1$ $A_2$ $\ldots$ $A_K$

Sample Input 1

6 6
6 3
2 5
4 2
1 3
6 5
3 2
110001

Sample Output 1

9
2 5 6 5 6 3 1 3 6

The path $(2, 5, 6, 5, 6, 3, 1, 3, 6)$ has a length no greater than $4N$, and

  • it has odd number ($1$) of $1$
  • it has odd number ($1$) of $2$
  • it has even number ($2$) of $3$
  • it has even number ($0$) of $4$
  • it has even number ($2$) of $5$
  • it has odd number ($3$) of $6$

so it is a good path with respect to $S = 110001$.


Sample Input 2

3 3
3 1
3 2
1 2
000

Sample Output 2

0

An empty path $()$ is a good path with respect to $S = 000000$.
Alternatively, paths like $(1, 2, 3, 1, 2, 3)$ are also accepted.

真的要图吗?可以尝试只经过图里面的一棵生成树

考虑数中序列节点相邻的在序列相邻是什么东西?欧拉环游序!

但是欧拉环游序的奇偶不一定正确,怎么办?

想一下如何改变一个位置的奇偶。可以先向他父亲走一步,然后走回来,然后再向父亲走,好像就满足了。

但是 1 没有父亲?

反正一开始都搜到了,在最后回去的时候,特判一下,不走就行了

#include<cstdio>
const int N=1e5+5;
int n,m,k,idx,a[N<<2],b[N<<2],f[N],t[N],fa[N],hd[N],e_num,u,v,c[N];
char s[N];
struct edge{
int v,nxt;
}e[N<<2];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
void dfs(int x,int y)
{
a[++idx]=x;
for(int i=hd[x];i;i=e[i].nxt)
{
if(e[i].v!=y)
{
dfs(e[i].v,x);
a[++idx]=x;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
if(find(u)!=find(v))
fa[find(u)]=find(v),add_edge(u,v),add_edge(v,u);
}
scanf("%s",s+1);
dfs(1,0);
for(int i=idx;i>=1;i--)
if(!t[a[i]])
t[a[i]]=1,f[i]=1;;
for(int i=1;i<idx;i++)
{
if(f[i])
if((c[a[i]]&1)==(s[a[i]]-'0'))
b[++k]=a[i],b[++k]=a[i+1],c[a[i+1]]++,c[a[i]]++;
b[++k]=a[i];
c[a[i]]++;
}
if((c[1]&1)!=(s[1]-'0'))
b[++k]=1;
printf("%d\n",k);
for(int i=1;i<=k;i++)
printf("%d ",b[i]);
}

[ABC244G] Construct Good Path的更多相关文章

  1. Path Creation and Path Painting

    [Path Creation and Path Painting] Path creation and path painting are separate tasks. First you crea ...

  2. imutils.path

    from imutils import paths # 要在哪条路径下查找 path = '...' # 查找图片,得到图片路径 imagePaths = list(imutils.paths.lis ...

  3. alfresco category searches...

    From page 475 of the Alfresco Developer Guide- Category searches use the PATH field, but you constru ...

  4. ArrowLayer : A coustom layer animation

    Since my other answer (animating two levels of masks) has some graphics glitches, I decided to try r ...

  5. Java fundamentals of basic IO

    IO is a problem difficult to handle in various of systems because it  always becomes a bottleneck in ...

  6. react native mac install

    Mac上使用react native tips: 1. 安装Homebrew ruby -e "$(curl -fsSL https://raw.githubusercontent.com/ ...

  7. boost操作xml 5分钟官方教程

    Five Minute Tutorial This tutorial uses XML. Note that the library is not specifically bound to XML, ...

  8. Device trees, Overlays and Parameters of Raspberry Pi

    Raspberry Pi's latest kernels and firmware, including Raspbian and NOOBS releases, now by default us ...

  9. hdfs api读写文写件个人练习

    看下hdfs的读写原理,主要是打开FileSystem,获得InputStream or OutputStream: 那么主要用到的FileSystem类是一个实现了文件系统的抽象类,继承来自org. ...

  10. Android測试环境变量配置表

    要改动的文件是~/bash_profile这个配置文件,内容例如以下: # Setting PATH for Java JAVA_HOME="/Library/Java/JavaVirtua ...

随机推荐

  1. Spark RDD惰性计算的自主优化

    原创/朱季谦 RDD(弹性分布式数据集)中的数据就如final定义一般,只可读而无法修改,若要对RDD进行转换或操作,那就需要创建一个新的RDD来保存结果.故而就需要用到转换和行动的算子. Spark ...

  2. 《CTFshow-Web入门》06. Web 51~60

    @ 目录 web51 题解 web52 题解 原理 web53 题解 原理 web54 题解 原理 web55 题解 原理 web56 题解 原理 web57 题解 原理 web58 题解 原理 we ...

  3. VulnStack - ATT&CK红队评估实战(四) Writeup

    VulnStack - ATT&CK红队评估实战(四) Writeup VulnStack(四)环境搭建 1.项目地址 http://vulnstack.qiyuanxuetang.net/v ...

  4. iOS日志获取

    IOS日志获取 崩溃日志存放目录: /var/mobile/Library/Logs/CrashReporter

  5. 【项目源码】基于JavaEE的健康管理系统

    随着网络技术的不断发展,网站的开发与运用变得更加广泛.这次采用java语言SSH框架(Spring,Struts,Hibernate)设计并实现了面向特定群体的健康管理平台.该网站主要有教师饮食管理. ...

  6. signalr断开连接后重新连接

    signalr断开连接后重新连接 产品需求连接signalr 不稳定,连着连着就断了,场面十分尴尬,导致产品经理现场被批!!(内心无比高兴 ) 分析得出问题现象: 服务器因某些特殊原因,导致服务停止一 ...

  7. PowerShell收集信息及绕过PowerShell权限

    PowerShell脚本的4种执行权限: Restricted:默认设置,不允许任何script运行 AllSigned:只能运行经过数字证书签名的script RemoteSigned:本地脚本不做 ...

  8. FFmpeg中的常用结构体分析

    一.前言 在学习使用FFmpeg进行编解码时,我们有必要先去熟悉FFmpeg中的常用结构体,只有对它们的含义和用途有深刻的了解,我们才能为后面的学习打下坚实的基础.所以,这篇文章将会介绍这些常用的结构 ...

  9. HTML一键打包APK工具1.9.5更新,新增一机一码功能

    HMTL网址打包APK,可以把本地HTML项目, Egret游戏,网页游戏,或者网站打包为一个安卓应用APK文件,无需编写任何代码,也无需配置安卓开发环境,支持在最新的安卓设备上安装运行. 打包软件会 ...

  10. 电气工程师必学------CODESYS v3.5 入门学习笔记(一)

    一.新建工程 打开软件新建工程,如图 此教程只是入门练习,所以这里一般情况下都是创建的Standard project,也就是标准工程.窗口下方可以设置工程名称与存放位置. 紧接着是选择设备与编译语言 ...