[ABC244G] Construct Good Path
Problem Statement
You are given a simple connected undirected graph with $N$ vertices and $M$ edges. (A graph is said to be simple if it has no multi-edges and no self-loops.)
For $i = 1, 2, \ldots, M$, the $i$-th edge connects Vertex $u_i$ and Vertex $v_i$.
A sequence $(A_1, A_2, \ldots, A_k)$ is said to be a path of length $k$ if both of the following two conditions are satisfied:
- For all $i = 1, 2, \dots, k$, it holds that $1 \leq A_i \leq N$.
- For all $i = 1, 2, \ldots, k-1$, Vertex $A_i$ and Vertex $A_{i+1}$ are directly connected with an edge.
An empty sequence is regarded as a path of length $0$.
You are given a sting $S = s_1s_2\ldots s_N$ of length $N$ consisting of $0$ and $1$.
A path $A = (A_1, A_2, \ldots, A_k)$ is said to be a good path with respect to $S$ if the following conditions are satisfied:
- For all $i = 1, 2, \ldots, N$, it holds that:
- if $s_i = 0$, then $A$ has even number of $i$'s.
- if $s_i = 1$, then $A$ has odd number of $i$'s.
Under the Constraints of this problem, it can be proved that there is at least one good path with respect to $S$ of length at most $4N$.
Print a good path with respect to $S$ of length at most $4N$.
Constraints
- $2 \leq N \leq 10^5$
- $N-1 \leq M \leq \min\lbrace 2 \times 10^5, \frac{N(N-1)}{2}\rbrace$
- $1 \leq u_i, v_i \leq N$
- The given graph is simple and connected.
- $N, M, u_i$, and $v_i$ are integers.
- $S$ is a string of length $N$ consisting of $0$ and $1$.
Input
Input is given from Standard Input in the following format:
$N$ $M$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_M$ $v_M$
$S$
Output
Print a good path with respect to $S$ of length at most $4N$ in the following format.
Specifically, the first line should contain the length $K$ of the path, and the second line should contain the elements of the path, with spaces in between.
$K$
$A_1$ $A_2$ $\ldots$ $A_K$
Sample Input 1
6 6
6 3
2 5
4 2
1 3
6 5
3 2
110001
Sample Output 1
9
2 5 6 5 6 3 1 3 6
The path $(2, 5, 6, 5, 6, 3, 1, 3, 6)$ has a length no greater than $4N$, and
- it has odd number ($1$) of $1$
- it has odd number ($1$) of $2$
- it has even number ($2$) of $3$
- it has even number ($0$) of $4$
- it has even number ($2$) of $5$
- it has odd number ($3$) of $6$
so it is a good path with respect to $S = 110001$.
Sample Input 2
3 3
3 1
3 2
1 2
000
Sample Output 2
0
An empty path $()$ is a good path with respect to $S = 000000$.
Alternatively, paths like $(1, 2, 3, 1, 2, 3)$ are also accepted.
真的要图吗?可以尝试只经过图里面的一棵生成树
考虑数中序列节点相邻的在序列相邻是什么东西?欧拉环游序!
但是欧拉环游序的奇偶不一定正确,怎么办?
想一下如何改变一个位置的奇偶。可以先向他父亲走一步,然后走回来,然后再向父亲走,好像就满足了。
但是 1 没有父亲?
反正一开始都搜到了,在最后回去的时候,特判一下,不走就行了
#include<cstdio>
const int N=1e5+5;
int n,m,k,idx,a[N<<2],b[N<<2],f[N],t[N],fa[N],hd[N],e_num,u,v,c[N];
char s[N];
struct edge{
int v,nxt;
}e[N<<2];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
void dfs(int x,int y)
{
a[++idx]=x;
for(int i=hd[x];i;i=e[i].nxt)
{
if(e[i].v!=y)
{
dfs(e[i].v,x);
a[++idx]=x;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
if(find(u)!=find(v))
fa[find(u)]=find(v),add_edge(u,v),add_edge(v,u);
}
scanf("%s",s+1);
dfs(1,0);
for(int i=idx;i>=1;i--)
if(!t[a[i]])
t[a[i]]=1,f[i]=1;;
for(int i=1;i<idx;i++)
{
if(f[i])
if((c[a[i]]&1)==(s[a[i]]-'0'))
b[++k]=a[i],b[++k]=a[i+1],c[a[i+1]]++,c[a[i]]++;
b[++k]=a[i];
c[a[i]]++;
}
if((c[1]&1)!=(s[1]-'0'))
b[++k]=1;
printf("%d\n",k);
for(int i=1;i<=k;i++)
printf("%d ",b[i]);
}
[ABC244G] Construct Good Path的更多相关文章
- Path Creation and Path Painting
[Path Creation and Path Painting] Path creation and path painting are separate tasks. First you crea ...
- imutils.path
from imutils import paths # 要在哪条路径下查找 path = '...' # 查找图片,得到图片路径 imagePaths = list(imutils.paths.lis ...
- alfresco category searches...
From page 475 of the Alfresco Developer Guide- Category searches use the PATH field, but you constru ...
- ArrowLayer : A coustom layer animation
Since my other answer (animating two levels of masks) has some graphics glitches, I decided to try r ...
- Java fundamentals of basic IO
IO is a problem difficult to handle in various of systems because it always becomes a bottleneck in ...
- react native mac install
Mac上使用react native tips: 1. 安装Homebrew ruby -e "$(curl -fsSL https://raw.githubusercontent.com/ ...
- boost操作xml 5分钟官方教程
Five Minute Tutorial This tutorial uses XML. Note that the library is not specifically bound to XML, ...
- Device trees, Overlays and Parameters of Raspberry Pi
Raspberry Pi's latest kernels and firmware, including Raspbian and NOOBS releases, now by default us ...
- hdfs api读写文写件个人练习
看下hdfs的读写原理,主要是打开FileSystem,获得InputStream or OutputStream: 那么主要用到的FileSystem类是一个实现了文件系统的抽象类,继承来自org. ...
- Android測试环境变量配置表
要改动的文件是~/bash_profile这个配置文件,内容例如以下: # Setting PATH for Java JAVA_HOME="/Library/Java/JavaVirtua ...
随机推荐
- [ABC126E] 1 or 2
2023-01-07 题目 题目传送门 翻译 翻译 难度&重要性(1~10):2 题目来源 AtCoder 题目算法 并查集 解题思路 因为每张卡片上的数字只能是 \(1\) 或者 \(2\) ...
- HarmonyOS扫码服务,应用服务一扫直达打造系统级流量新入口
二维码如今是移动应用流量入口以及功能实现的重要工具,也是各App的流量入口,是物.人.服务的连接器,通过扫码我们可以更便捷的生活,更高效的进行信息交互,包括信息的发布.信息的获取. 在日常扫码过程中, ...
- Codeforces 1462F The Treasure of The Segments
题意 给\(n(1\leq n\leq 2*10^5)\)个线段$[l_i,r_i] (1≤l_i≤r_i≤10^9) $,问最少删除几个线段,使得剩下线段中,有至少一个线段与所有线段相交. 分析 对 ...
- Go开始:Go基本元素介绍
本文深入探讨了Go编程语言中的核心概念,包括标识符.关键字.具名函数.具名值.定义类型.类型别名.包和模块管理,以及代码块和断行.这些元素是构成Go程序的基础,也是编写高质量代码的关键. 关注Tech ...
- SpingCloud:Gateway+Nginx+Stomp+Minio构建聊天室并进行文件传输
注:本人使用阿里云服务器(安装mino)+本地虚拟机(安装nginx)进行,理论上完全在本地进行也可以. 1.前期准备: 1.将本地虚拟机设置为静态ip且能ping通外网,参考网址:https://w ...
- WPF中以MVVM方式,实现RTSP视频播放
前言视频播放在上位机开发中经常会遇到,基本上是两种常见的解决方案 1.采用厂家提供的sdk和前端控件进行展示,常见的海康/大华都提供了相关sdk及文档 2.开启相机onvif协议,捅过rtsp视频流进 ...
- 前端三件套系例之CSS——CSS3基础样式
文章目录 1.宽和高 案例 2.字体属性 2-1 文字字体 2-2 字体大小 2-3 字重(粗细) 2-4 文本颜色 2-5 总结 2-6 案例 文字属性 3-1 文字对齐 3-2 文字装饰 3-3 ...
- git Failed to connect to 127.0.0.1 port xxxx: Connection refused 的问题。
问题描述在使用 git 拉取.提交代码的时候,会出现 git Failed to connect to 127.0.0.1 port xxxx: Connection refused 的问题. 原因: ...
- 2020/4/27 日常补坑-tarjan第一道awa
第一题 luoguP1407 我们已知n对夫妻的婚姻状况,称第i对夫妻的男方为Bi,女方为Gi.若某男Bi与某女Gj曾经交往过(无论是大学,高中,亦或是幼儿园阶段,i≠j),则当某方与其配偶(即Bi与 ...
- umich cv-3-2
UMICH CV Neural Network 既然谈到神经网络,我们肯定要讨论在神经网络中是如何进行梯度的计算以及参数的优化的 传统的方法就是我们手动计算梯度,但是随着神经网络层数的增加,这种方法显 ...