聊聊从大模型来看NLP解决方案之UIE
概述
自然语言处理NLP任务的实现,相比较以前基于传统机器学习算法实现方法,现在越来越集中使用大模型来实现。
通过——数据标注-模型训练-模型调优/微调-模型压缩-预测部署的大模型流程,覆盖NLP多场景满足开发者落地实现与灵活定制的需求。
PaddleNLP是其中典型的NLP解决方案库,通过聚合业界优质预训练模型并提供开箱即用的开发体验,覆盖NLP多场景的模型库搭配产业实践范例可满足开发者灵活定制的需求。
预训练基座模型主要以ERINE系列大模型为主,毕竟是自家的噻。
之前相关的NLP系列文档也是基于预训练大模型的解决方案来实现的。可参考:
聊聊PaddleNLP库与层次多标签文本分类任务
聊聊层次多标签分类NLP任务的实践
UIE
UIE:Universal Information Extraction,通用信息抽取统一框架。官方文档:UIE。
该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。PaddleNLP借鉴论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。
开箱即用
paddlenlp.Taskflow
提供通用信息抽取、评价观点抽取等能力,可抽取多种类型的信息,包括但不限于命名实体识别(如人名、地名、机构名等)、关系(如电影的导演、歌曲的发行时间等)、事件(如某路口发生车祸、某地发生地震等)、以及评价维度、观点词、情感倾向等信息。用户可以使用自然语言自定义抽取目标,无需训练即可统一抽取输入文本中的对应信息。实现开箱即用,并满足各类信息抽取需求。
以实体抽取任务为例:
命名实体识别(Named Entity Recognition,简称NER),是指识别文本中具有特定意义的实体。在开放域信息抽取中,抽取的类别没有限制,用户可以自己定义。
- 例如抽取的目标实体类型是"时间"、"选手"和"赛事名称", schema构造如下:
['时间', '选手', '赛事名称']
调用示例:
>>> from pprint import pprint
>>> from paddlenlp import Taskflow
>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
>>> ie = Taskflow('information_extraction', schema=schema)
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!")) # Better print results using pprint
[{'时间': [{'end': 6,
'probability': 0.9857378532924486,
'start': 0,
'text': '2月8日上午'}],
'赛事名称': [{'end': 23,
'probability': 0.8503089953268272,
'start': 6,
'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
'选手': [{'end': 31,
'probability': 0.8981548639781138,
'start': 28,
'text': '谷爱凌'}]}]
- 例如抽取的目标实体类型是"肿瘤的大小"、"肿瘤的个数"、"肝癌级别"和"脉管内癌栓分级", schema构造如下:
['肿瘤的大小', '肿瘤的个数', '肝癌级别', '脉管内癌栓分级']
在上例中我们已经实例化了一个Taskflow对象,这里可以通过set_schema方法重置抽取目标。调用示例:
>>> schema = ['肿瘤的大小', '肿瘤的个数', '肝癌级别', '脉管内癌栓分级']
>>> ie.set_schema(schema)
>>> pprint(ie("(右肝肿瘤)肝细胞性肝癌(II-III级,梁索型和假腺管型),肿瘤包膜不完整,紧邻肝被膜,侵及周围肝组织,未见脉管内癌栓(MVI分级:M0级)及卫星子灶形成。(肿物1个,大小4.2×4.0×2.8cm)。"))
[{'肝癌级别': [{'end': 20,
'probability': 0.9243267447402701,
'start': 13,
'text': 'II-III级'}],
'肿瘤的个数': [{'end': 84,
'probability': 0.7538413804059623,
'start': 82,
'text': '1个'}],
'肿瘤的大小': [{'end': 100,
'probability': 0.8341128043459491,
'start': 87,
'text': '4.2×4.0×2.8cm'}],
'脉管内癌栓分级': [{'end': 70,
'probability': 0.9083292325934664,
'start': 67,
'text': 'M0级'}]}]
UIE支持多种NLP任务,毕竟是统一信息抽取框架。其它的任务可以参考官方文档。
基座模型
肯定是自家的预训练基座啦。
模型 | 结构 | 语言 |
---|---|---|
uie-base (默认) | 12-layers, 768-hidden, 12-heads | 中文 |
uie-base-en | 12-layers, 768-hidden, 12-heads | 英文 |
uie-medical-base | 12-layers, 768-hidden, 12-heads | 中文 |
uie-medium | 6-layers, 768-hidden, 12-heads | 中文 |
uie-mini | 6-layers, 384-hidden, 12-heads | 中文 |
uie-micro | 4-layers, 384-hidden, 12-heads | 中文 |
uie-nano | 4-layers, 312-hidden, 12-heads | 中文 |
uie-m-large | 24-layers, 1024-hidden, 16-heads | 中、英文 |
uie-m-base | 12-layers, 768-hidden, 12-heads | 中、英文 |
uie模型是基于ERINE基座模型训练出来的。
微调—定制化
其实在我个人的角度来看,上述的内容在很多的框架、平台都已经有了;譬如Modelscope,我现在养成习惯,遇到啥NLP相关的、大模型相关的,就去Modelscope找解决策略。但在Modelscope上有个最大的问题,当然这是我个人的看法——微调支持不够,很多的模型/库压根没有微调。老实说,这的确是帮助不大,在很多时候我们需要的是可以接入的定制化实现。
这也正常,毕竟如果开放了微调,支持灵活的定制化,对开源方就不太友好了。
而相比较来说,PaddleNLP的微调支持就很到位了。
数据标注
基于doccano标注平台做数据标注。可参考: 聊聊层次多标签分类NLP任务的实践。
模型微调
荐使用 Trainer API对模型进行微调。只需输入模型、数据集等就可以使用 Trainer API 高效快速地进行预训练、微调和模型压缩等任务,可以一键启动多卡训练、混合精度训练、梯度累积、断点重启、日志显示等功能,Trainer API 还针对训练过程的通用训练配置做了封装,比如:优化器、学习率调度等。
使用下面的命令,使用 uie-base 作为预训练模型进行模型微调,将微调后的模型保存至$finetuned_model:
单卡启动:
export finetuned_model=./checkpoint/model_best
python finetune.py \
--device gpu \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--seed 42 \
--model_name_or_path uie-base \
--output_dir $finetuned_model \
--train_path data/train.txt \
--dev_path data/dev.txt \
--max_seq_length 512 \
--per_device_eval_batch_size 16 \
--per_device_train_batch_size 16 \
--num_train_epochs 20 \
--learning_rate 1e-5 \
--label_names "start_positions" "end_positions" \
--do_train \
--do_eval \
--do_export \
--export_model_dir $finetuned_model \
--overwrite_output_dir \
--disable_tqdm True \
--metric_for_best_model eval_f1 \
--load_best_model_at_end True \
--save_total_limit 1
模型评估
可忽略
模型预测
paddlenlp.Taskflow装载定制模型,通过task_path指定模型权重文件的路径,路径下需要包含训练好的模型权重文件model_state.pdparams。
>>> from pprint import pprint
>>> from paddlenlp import Taskflow
>>> schema = ['出发地', '目的地', '费用', '时间']
# 设定抽取目标和定制化模型权重路径
>>> my_ie = Taskflow("information_extraction", schema=schema, task_path='./checkpoint/model_best')
>>> pprint(my_ie("城市内交通费7月5日金额114广州至佛山"))
[{'出发地': [{'end': 17,
'probability': 0.9975287467835301,
'start': 15,
'text': '广州'}],
'时间': [{'end': 10,
'probability': 0.9999476678061399,
'start': 6,
'text': '7月5日'}],
'目的地': [{'end': 20,
'probability': 0.9998511131226735,
'start': 18,
'text': '佛山'}],
'费用': [{'end': 15,
'probability': 0.9994474579292856,
'start': 12,
'text': '114'}]}]
模型部署
- 模型导出:模型训练、压缩时已经自动进行了静态图的导出以及 tokenizer 配置文件保存,保存路径${finetuned_model} 下应该有 .pdimodel、.pdiparams 模型文件可用于推理。
- 模型部署:
# UIE 模型 CPU 推理
python deploy/python/infer.py --model_dir ./checkpoint/model_best --device cpu
# UIE 模型 GPU 推理
python deploy/python/infer.py --model_dir ./checkpoint/model_best --device gpu
总结
PaddleNLP是基于预训练大模型的NLP任务解决方案库,因此其实践流程其实都是一样的:数据标注-模型训练-模型调优/微调-模型压缩-预测部署。通过对PaddleNLP库的实践与了解熟悉,我个人觉得,非常有助于掌握NLP与大模型在实际应用中的落地。建议大家多了解学习。
更多PaddleNLP与大模型的文章,请上个人公众号查阅:
聊聊从大模型来看NLP解决方案之UIE的更多相关文章
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...
- PowerDesigner 学习:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- java大文件上传解决方案
最近遇见一个需要上传百兆大文件的需求,调研了七牛和腾讯云的切片分段上传功能,因此在此整理前端大文件上传相关功能的实现. 在某些业务中,大文件上传是一个比较重要的交互场景,如上传入库比较大的Excel表 ...
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- Android大图片裁剪终极解决方案(上:原理分析)
转载声明:Ryan的博客文章欢迎您的转载,但在转载的同时,请注明文章的来源出处,不胜感激! :-) http://my.oschina.net/ryanhoo/blog/86842 约几个月前,我正 ...
- WCF大数据量传输解决方案
文章内容列表:1. 场景:2. 解决方案3. WCF契约与服务实现设计静态图4. WCF契约与服务实现设计详细说明6. 服务端启动服务代码:7. 客户端代码8. WCF大数据量传输解决方案源码下载 ...
- 文心大模型api使用
文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...
- AI大模型学习了解
# 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...
随机推荐
- Linux Char-Driver (字符驱动 摘要)(一)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- Performance Improvements in .NET 8 -- JIT部分翻译
相关视频 动态PGO 基准测试设置 在本文中,我包括微基准测试以突出讨论的各个方面.其中大部分基准测试都是使用BenchmarkDotNet v0.13.8实现的,除非另有说明,否则每个基准测试都有一 ...
- Linux 运维工程师面试真题-1-必会Linux 操作系统知识
Linux 运维工程师面试真题-1-必会Linux 操作系统知识 运维的整个面试流程其实是非常繁杂的,为了方便大家准备,我们特地在这里给大家整理了 一些 Linux 系统运维相关的面试题,有些问题没有 ...
- 记录--前端无感知刷新token & 超时自动退出
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前端无感知刷新token&超时自动退出 一.token的作用 因为http请求是无状态的,是一次性的,请求之间没有任何关系,服务端 ...
- 为什么医疗保健需要MFT来帮助保护EHR文件传输
毫无疑问,医疗保健行业需要EHR技术来处理患者,设施,提供者等之间的敏感患者信息.但是,如果没有安全的MFT解决方案,您将无法安全地传输患者文件,从而使您的运营面临遭受数据泄露,尴尬,声誉损失以及随之 ...
- 2024 OI/VEX/啊啊啊? 赛季游记
不定期更新,随便写. 中马建交80周年 CreateJR赛项 什么远古比赛,2024/01 的时间用 2023 赛季的规则(挺好). Day -4 1/24 在 破败不堪 的上海市安生学校集训. 点的 ...
- List和ObservableCollection的转换
1.我们后台查询全部List数据的时候,前台需要ObservableCollection展示 这个时候List需要转换成ObservableCollection public static Obser ...
- Scala 可变列表ListBuffer
1 package chapter07 2 3 import scala.collection.mutable.ListBuffer 4 5 object Test05_ListBuffer { 6 ...
- #线性基#CF1100F Ivan and Burgers
题目传送门 分析 线段树上直接维护线性基是三个log的.(一定要合并) 考虑一种分治做法,在 \([l,mid]\) 和 \((mid,r]\) 的询问分治处理, 跨过 \([mid,mid+1]\) ...
- #凸包,闵可夫斯基和#CF87E Mogohu-Rea Idol
题目 按逆时针顺序给出三个凸包点集 \(\mathbb{A,B,C}\),每次查询给出点 \(D\), 问是否存在点 \(A\in\mathbb{A},B\in\mathbb{B},C\in\math ...