一 模型介绍

向量模型用于生成向量表示,被广泛应用于检索、分类、聚类或语义匹配等传统的自然语言处理任务。到了大模型时代,由于上下文长度的限制,需要压缩、存储和查询大量的信息,这就需要用到向量模型对输入的文本进行向量化表示,然后再喂给大模型,以得到期望的输出。更长的向量模型输入的长度可以提高 RAG 场景下大模型回复的准确性,而且适用于各种处理长文本的场景,例如处理数十页的报告综述等。

模型参数

模型特点:

  • 使用了Alibi而不是位置编码,直接在计算注意力的时候加入了双向的Alibi,达到更长的输入长度
  • 在大量精处理后的数据上进行训练,并使用文本对数据和难负样本数据进行微调

更多详情可以查看论文:https://arxiv.org/pdf/2310.19923.pdf

二 效果对比

jina 标榜自己是一个双语模型,不是单语或者多语言模型,这样更加适合做语义相似检索,而且不需要进行翻译。因此本次使用jina-embeddings-v2-base-zh这个模型来验证中英双语能力。

中英文双语表征能力

使用下面的一个句子对,对比模型是MOKA的m3e-large

['How is the weather today?', '今天天气怎么样?']
模型 相似度
jina-v2-base-zh 0.7860609
m3e-large 0.7047691

很明显,结果表明了jina模型对这两个句子嵌入后的向量更加相似

长中英文双语表征能力

上述差距还不大,但是jina-v2支持的上下文可达8k,而m3e-large最多只能到512。这回用长本文来看看两者的差距。


e = "Here's a breakdown of Machine Learning (ML) and Deep Learning (DL):\n Machine Learning:\n A subfield of artificial intelligence (AI) that enables computers to learn from data without explicit programming.\n The process involves training a model on a large dataset to identify patterns and relationships.\n Once trained, the model can make new predictions or decisions based on new data.\n Examples of machine learning include:\n Supervised learning: training a model on labeled data (e.g., training a spam filter on emails).\n Unsupervised learning: finding hidden patterns in unlabeled data (e.g., discovering clusters of customers in a dataset).\n Reinforcement learning: an agent learns through trial and error to maximize its rewards (e.g., a robot learning to play a game).\n Deep Learning:\n A subfield of machine learning that focuses on mimicking the structure and function of the human brain.\n Deep learning models are built using artificial neural networks with multiple layers.\n Each layer of the network performs a specific task, and the entire network works together to learn complex patterns from data."
len(e)
>> 1109 z = "以下是机器学习 (ML) 和深度学习 (DL) 的细分:\n 机器学习:\n 人工智能 (AI) 的一个子领域,使计算机无需显式编程即可从数据中学习。\n 该过程涉及训练模型在大型数据集上识别模式和关系。\n 经过训练,模型可以根据新数据做出新的预测或决策。\n 机器学习的示例包括:\n 监督学习:在标记数据(例如,训练电子邮件的垃圾邮件过滤器)。\n 无监督学习:在未标记的数据中查找隐藏模式(例如,发现数据集中的客户集群)。\n 强化学习:代理通过反复试验进行学习,以最大化其奖励(例如,学习玩游戏的机器人)。\n 深度学习:\n 机器学习的一个子领域,专注于模仿人脑的结构和功能。\n 深度学习模型是使用多层人工神经网络构建的。\n 网络的每一层都执行特定的任务,整个网络协同工作,从数据中学习复杂的模式"
len(z)
>> 344
模型 相似度
jina-v2-base-zh 0.82530826
m3e-large 0.66310775

输入的文本长度增加后,可以明显看到两者的差距,再长的文本可能m3e也处理不了,因此没有必要再进行下一步验证。

内存占用

模型 向量长度 字节
jina-v2-base-zh 768 3072 Bytes
m3e-large 1024 4096 Bytes

相当于每个嵌入后的向量,jina-v2-base可以节省大约1k字节。如果有10亿条这样的向量数据可节省1T的空间,这对于大规模RAG场景下非常有用。

8k中英双语文本嵌入模型效果初探的更多相关文章

  1. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  2. Matalb中英双语手册-年少无知翻译版本

    更新: 20171207: 这是大学期间参加数模翻译的手册 正文: 愚人节快乐,突然发现自己在博客园的一篇文章.摘取如下: MATLAB 语言是一种工程语言,语法很像 VB 和 C,比 R 语言容易学 ...

  3. One SQL to Rule Them All – an Efficient and Syntactically Idiomatic Approach to Management of Streams and Tables(中英双语)

    文章标题 One SQL to Rule Them All – an Efficient and Syntactically Idiomatic Approach to Management of S ...

  4. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  5. What’s new for Spark SQL in Apache Spark 1.3(中英双语)

    文章标题 What’s new for Spark SQL in Apache Spark 1.3 作者介绍 Michael Armbrust 文章正文 The Apache Spark 1.3 re ...

  6. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

  7. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  8. 痞子衡嵌入式:开启NXP-MCUBootUtility工具的HAB加密功能 - CST(中英双语)

    1 Reason for enabling HAB encryption function 为什么要开启HAB加密功能 NXP-MCUBootUtility is a tool designed fo ...

  9. 痞子衡嵌入式:开启NXP-MCUBootUtility工具的HAB签名功能 - CST(中英双语)

    1 Reason for enabling HAB signature function 为什么要开启HAB签名功能 NXP-MCUBootUtility is a tool designed for ...

  10. Apache Spark as a Compiler: Joining a Billion Rows per Second on a Laptop(中英双语)

    文章标题 Apache Spark as a Compiler: Joining a Billion Rows per Second on a Laptop Deep dive into the ne ...

随机推荐

  1. ansible-vault 教程

    基本使用 在编写playbook时,可能会涉及到一些敏感的数据,比如密码,当这些敏感数据以明文的方式存储在playbook中时,可能是不能被接受的,那么我们该怎么办呢?ansible官方已经考虑到了这 ...

  2. Nexus npm 搭建私有仓库 很好很强大 nrm electronjs

    Nexus npm 搭建私有仓库 很好很强大 https://www.jianshu.com/p/e437d8e694a0 主要想到这个包的话比较大 所以要是有个私有仓库 就方便许多 https:// ...

  3. 音频信号质量的度量标准--MOS得分的由来

    早期语音质量的评价方式是凭主观的,人们在打通电话之后通过人耳来感知语音质量的好坏.1996年国际ITU组织在ITU-T P.800和P.830建议书开始制订相关的评测标准:MOS(Mean Opini ...

  4. Grails批改默认启动端口

    Grails修改默认启动端口 Grails默认启动端口号是8080,有几种修改的方式: 一.在官网文档中有介绍: grails -Dserver.port=8090 run-app -Dserver. ...

  5. C++ bind函数

    bind()是一个函数适配器,返回一个可调用对象,他可以将一个函数的参数列表做魔改. 设置默认参数 using namespace std::placeholders; void f(int a, i ...

  6. 5G+云渲染:如何快速推进XR和元宇宙实现?

    XR(扩展现实)领域正在以惊人的速度增长.目前,到 2024 年,一些专家表示这个行业的价值将达到 3000 亿美元. 这个行业发展如此迅速的部分原因是 XR 将在商业环境中的带来巨大利益.近年来,很 ...

  7. 计算机网络(http协议)

    一  软件开发架构 CS 客户端 服务端BS 浏览器 服务端ps: BS本质也是CS 二  浏览器窗口输入网址回车发生了几件事 1.浏览器朝服务端发送请求2.服务端接受请求3.服务端返回相应的响应4. ...

  8. .Net依赖注入神器Scrutor(上)

    前言 从.Net Core 开始,.Net 平台内置了一个轻量,易用的 IOC 的框架,供我们在应用程序中使用,社区内还有很多强大的第三方的依赖注入框架如: Autofac DryIOC Grace ...

  9. 记录--让URL地址都变成了"ooooooooo"

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 发现一个很有创意的小工具网站,如封面图所示功能很简单,就是将一个URL地址转换为都是 ooooooooo 的样子,通过转换后的地址访问可以 ...

  10. drools执行String规则或执行某个规则文件

    1.背景 此处主要记录一下2个小的知识点,防止以后忘记. 1.如何在drools中执行某个drl文件. 2.如果我们的规则是一个String类型的字符串,那么该如何执行. 2.实现 2.1 执行指定的 ...