Description

Link.

  • 游戏在 \(4\times4\) 的菱形棋盘上进行;

  • 两名玩家轮流放置弹珠,可以在横向、纵向、\(45\) 度斜线、\(135\) 度斜线方向未放置弹珠的位置连续放置 \(1\) 至 \(3\) 颗弹珠,玩家在可以放置弹珠的情况下,必须至少放置 \(1\) 颗弹珠。

  • 如果某位玩家无法再继续放置弹珠,则该名玩家输掉游戏,另外一名玩家获胜。

Solution

虽然是套路,但毕竟是之前没做过的套路,写篇题解记一下。

首先我们可以直接考虑状压,棋盘编号见图:

然后你打个表出来,表示所有能走的情况(状压),比如我要放棋子在 \(1-5-9\) 上面,就是 \((100010001)_{2}\)。

因为是用 C++ 输出的形式手打的 \(82\) 种情况表,所以 generator 就不附了。

然后你打个 DP,设 \(f_{S}\) 为当前棋盘状态为 \(S\)(\(S\) 的第 \(i\) 为 \(1\) 表示这个格子被占据,反之亦然)是先手必胜还是先手必输或者不知道(分别对应数字 \(1/0/-1\))。

初始状态为 \(\forall i\in[0,2^{n}-1),f_{i}=-1\);\(f_{2^{n}-1}=0\)。

然后你记搜一下,把所有状态搜出来。

然后就回答询问即可,只是不太清楚为什么要搞这么多字符读入卡 IO,明明多不多组都一样。

#include<bits/stdc++.h>
using namespace std;
int t,n=7,m[8]={1,2,3,4,3,2,1},id,f[(1<<16)+10];
char s[10];
const int upper=(1<<16);
const int ID[10][10]={{0},{4,1},{8,5,2},{12,9,6,3},{13,10,7},{14,11},{15}};
const int walking[90]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,17,3,18,272,48,34,6,288,36,4352,768,544,96,68,12,4608,576,72,12288,8704,1536,1088,192,9216,1152,24576,17408,3072,2176,18432,49152,34816,33,528,66,8448,1056,132,16896,2112,33792,136,273,7,1057,4368,16912,112,546,2114,14,292,1792,8736,224,33824,1092,4672,584,28672,3584,17472,2184,9344,57344,34944};
inline int unionset(int x,int y){return x|y;}
inline int intersection(int x,int y){return x&y;}
inline bool emptyset(int x){return x==0;}
void dfs(int board)
{
if(~f[board]) return;
for(int i=0;i<82;++i)
{
if(emptyset(intersection(board,walking[i])))
{
int newset=unionset(board,walking[i]);
dfs(newset);
if(f[newset]==0)
{
f[board]=1;
return;
}
}
}
f[board]=0;
}
inline char fgc()
{
static char buf[1<<17],*p=buf,*q=buf;
return p==q&&(q=buf+fread(p=buf,1,1<<17,stdin),p==q)?EOF:*p++;
}
inline char fgop()
{
char res=0;
while((res^'*')&&(res^'.')) res=fgc();
return res;
}
inline void read(int &x)
{
x=0;
char c=fgc();
while(isdigit(c)==0) c=fgc();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^'0'),c=fgc();
}
int main()
{
read(t);
memset(f,-1,sizeof(f));
f[upper-1]=0;
for(int i=0;i^upper;++i)
{
if(f[i]==-1) dfs(i);
}
while(t--)
{
int board=0;
for(int i=0;i<n;++i)
{
for(int j=0;j<m[i];++j) board+=(fgop()=='*')?(1<<ID[i][j]):0;
}
printf(f[board]?"Possible.":"Impossible.");
printf("\n");
}
return 0;
}

Solution -「洛谷 P7395」「CoE-I 2021C」弹珠游戏的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. 「 洛谷 」P2768 珍珠项链

    珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...

  3. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  4. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

  5. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  6. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  7. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  8. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  9. 「P4994」「洛谷11月月赛」 终于结束的起点(枚举

    题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...

  10. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

随机推荐

  1. .net 温故知新【11】:Asp.Net Core WebAPI 入门使用及介绍

    在Asp.Net Core 上面由于现在前后端分离已经是趋势,所以asp.net core MVC用的没有那么多,主要以WebApi作为学习目标. 一.创建一个WebApi项目 我使用的是VS2022 ...

  2. find提权

    更新中.............. find 常用参数 语法:find [path-] [expression] path为查找路径,.为当前路径,/为根目录 expression即为参数 -name ...

  3. windows笔记本极致省电指南

    用到了三个软件:parkcontrol,process lasso,quickCPU parkcontrol -调整CPU的运行核心和频率,可以设置离电的时候关闭一些CPU核心数,以达到省电的目的 插 ...

  4. 华为防火墙NAT技术

    ---我是陈小瓜,一个普通的路人,和大家一起交流学习,完善自己. 源NAT NAT-no-pat 安全策略写法: 源NAT,写安全策略,写转换前的私网IP,因为先匹配安全策略.再匹配NAT策略 NAT ...

  5. RabbitMQ快速使用代码手册

    本篇博客的内容为RabbitMQ在开发过程中的快速上手使用,侧重于代码部分,几乎没有相关概念的介绍,相关概念请参考以下csdn博客,两篇都是我找的精华帖,供大家学习.本篇博客也持续更新~~~ 内容代码 ...

  6. 免杀系列之去除Defender令牌权限

    本文展示了Windows存在的一个小bug,该问题允许攻击者绕过保护反恶意软件(AV/EDR)免受各种形式攻击的Windows安全机制(Windows Protected Process Light) ...

  7. Java Date与时间戳的转换问题

    Java中String与Date格式之间的转换 - NemoWang - 博客园 (cnblogs.com) 主要是String类型的时间,需要使用DateFormat来进行设置转换的格式,调用fmt ...

  8. Python运维开发之路《python基础介绍》

    一. python介绍相关 1. Python简介 Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. - Python 的设计具有很强的可读性,相比其他语言经常使用英文关 ...

  9. Junit4 一直处于运行中的排查过程

    新买了一个Macbook Pro . 之前的工程搬家过来, 这天要跑个单元测试. 发现Junit4 一直处于运行中.没有错误信息,没有用例执行结果.遂开始排查原因. 这里插一句,苹果芯片的Mbp还是很 ...

  10. CF546E Soldier and Traveling 题解

    CF546E Soldier and Traveling 英文原题: 当然Luogu有中文翻译 对于这种类型的题目,又是增加,又是减少的,我们可以使用网络流进行转化. 说句废话: 网络流这个东西,趣味 ...