The Area Under the Receiver Operating Characteristic (AUC-ROC) curve is a performance metric commonly used to evaluate the effectiveness of classification models, especially in binary classification problems. It represents the model's ability to distinguish between the positive and negative classes.

Here's how to understand an AUC-ROC curve:

ROC curve: A Receiver Operating Characteristic (ROC) curve is a graphical plot that shows the relationship between the True Positive Rate (TPR) and the False Positive Rate (FPR) at various classification threshold levels. The TPR is plotted on the Y-axis, and the FPR is plotted on the X-axis. The curve is created by varying the classification threshold and calculating TPR and FPR for each value.

TPR (Sensitivity): The True Positive Rate, also known as Sensitivity or Recall, is the proportion of actual positive instances (in the dataset) that are correctly identified by the model. It is calculated as TPR = TP / (TP + FN), where TP is the number of true positives and FN is the number of false negatives.

FPR (1-Specificity): The False Positive Rate is the proportion of actual negative instances that are incorrectly identified as positive by the model. It is calculated as FPR = FP / (FP + TN), where FP is the number of false positives and TN is the number of true negatives. The FPR is also equal to 1 - Specificity.

AUC: The Area Under the ROC Curve (AUC) is a single value that measures the overall performance of the classification model across all possible threshold values. It is the area under the ROC curve, and it ranges from 0 to 1. The higher the AUC value, the better the classifier is at distinguishing between positive and negative instances.

Interpretation: An AUC-ROC value of 0.5 indicates that the classifier is performing at chance level (i.e., it is no better than randomly guessing the class labels). An AUC-ROC value close to 1 signifies that the classifier is excellent at distinguishing between the two classes, while a value close to 0 suggests that the classifier is performing poorly.

When comparing different classification models, it is common to prefer the model with a higher AUC-ROC value, as it typically represents better overall classification performance. However, it's important to consider other performance metrics, as well as the specific context and goals of the classification task, before making a final decision.

机器学习-评价指标-AUCROC的更多相关文章

  1. [Feature] Final pipeline: custom transformers

    有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-cust ...

  2. python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数)

    python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评 ...

  3. 分四个阶段学习python并找到一份好工作

    第一阶段 关注公众号"轻松学编程"了解更多. 详细学习资料 需要时间一个月. 1.python概念 ​ python是一种解释型.面向对象.动态数据类型的高级程序语言. ​ 理解: ...

  4. 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)

    原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...

  5. 机器学习算法中的评价指标(准确率、召回率、F值、ROC、AUC等)

    参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Ac ...

  6. 机器学习模型评价指标之ROC 曲线、 ROC 的 AUC 和 投资回报率

    前文回顾: 机器学习模型评价指标之混淆矩阵 机器学习模型评价指标之Accuracy.Precision.Recall.F-Score.P-R Curve.AUC.AP 和 mAP 1. 基本指标 1. ...

  7. R语言︱机器学习模型评价指标+(转)模型出错的四大原因及如何纠错

    笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模 ...

  8. 准确率,召回率,F值,机器学习分类问题的评价指标

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  9. 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)

    原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...

  10. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

随机推荐

  1. 一天吃透SpringCloud面试八股文

    1.什么是Spring Cloud ? Spring cloud 流应用程序启动器是基于 Spring Boot 的 Spring 集成应用程序,提供与外部系统的集成.Spring cloud Tas ...

  2. 【C++】初始化列表构造函数VS普通构造函数

    普通构造函数VS初始化列表构造函数 初始化列表构造函数最优先匹配问题 对于一个类而言,只要其中包含有初始化列表的构造函数,编译器在编译使用{}语法的构造时会最倾向于调用初始化列表构造函数,哪怕做类型转 ...

  3. 【Java】包名规范及整理

    目录 前言 包名规范 总结 前言 最近学习Java的时候,有一个 class 需要在每一个 java文件中写一写,然后我喜欢一次实验的java文件放到一个 Package 中,这就导致了持续不断的报错 ...

  4. 使用Drone+gitea配置自己的CICD流程

    什么是CI CD CI CD一般包含三个概念:持续集成(Continuous Integration ,CI),持续交付(Continuous Delivery),持续部署(Continuous De ...

  5. 生信服务器 | 更改 CentOS/RHEL 6/7 中的时区

    这几天在学习折腾 docker 的时候遇到一个很常见的问题,就是 run container 的时候发现大部分 image 默认使用的时间都是 UTC  (Universal Time Coordin ...

  6. 【RS】多光谱波段和全色波段的区别

    <p><strong>1.全色波段(Panchromatic Band)</strong></p> 全色图像是单通道的(即单波段灰色影像),其中全色是指 ...

  7. ChatGPT在线体验原理课-概览:ChatGPT 与自然语言处理

    # 概览:ChatGPT 与自然语言处理 本文将介绍 ChatGPT 与自然语言处理的相关知识. ## ChatGPT 与图灵测试 图灵测试是人工智能领域的一个经典问题,它旨在检验计算机是否能够表现出 ...

  8. 【HarmonyOS】一文教你如何在H5页面中使用电话、定位及导航

    ​[关键字] HarmonyOS.H5页面.拨打电话.获取系统定位.跳转高德地图导航 [1.写在前面] 上一篇中我们带领大家实现了一个在低码项目中跳转加载H5页面的功能,有兴趣的可以参考以下文章: h ...

  9. 数位DP?记忆化罢了!

    我看了半天的数位 DP,DP 没学会,人倒是麻了. 解决什么 一般用于求解给你一个区间 \([l,r]\),问你其中满足条件的数有多少个. 这种题目还是蛮常见的,我们一般情况下暴力只能拿一少部分分,之 ...

  10. 基于Sa-Token实现微服务之前的单点登录

    修改配置文件,准备好四个域名 127.0.0.1 auth.server.com 127.0.0.1 user.server.com 127.0.0.1 third.server.com 127.0. ...