The Area Under the Receiver Operating Characteristic (AUC-ROC) curve is a performance metric commonly used to evaluate the effectiveness of classification models, especially in binary classification problems. It represents the model's ability to distinguish between the positive and negative classes.

Here's how to understand an AUC-ROC curve:

ROC curve: A Receiver Operating Characteristic (ROC) curve is a graphical plot that shows the relationship between the True Positive Rate (TPR) and the False Positive Rate (FPR) at various classification threshold levels. The TPR is plotted on the Y-axis, and the FPR is plotted on the X-axis. The curve is created by varying the classification threshold and calculating TPR and FPR for each value.

TPR (Sensitivity): The True Positive Rate, also known as Sensitivity or Recall, is the proportion of actual positive instances (in the dataset) that are correctly identified by the model. It is calculated as TPR = TP / (TP + FN), where TP is the number of true positives and FN is the number of false negatives.

FPR (1-Specificity): The False Positive Rate is the proportion of actual negative instances that are incorrectly identified as positive by the model. It is calculated as FPR = FP / (FP + TN), where FP is the number of false positives and TN is the number of true negatives. The FPR is also equal to 1 - Specificity.

AUC: The Area Under the ROC Curve (AUC) is a single value that measures the overall performance of the classification model across all possible threshold values. It is the area under the ROC curve, and it ranges from 0 to 1. The higher the AUC value, the better the classifier is at distinguishing between positive and negative instances.

Interpretation: An AUC-ROC value of 0.5 indicates that the classifier is performing at chance level (i.e., it is no better than randomly guessing the class labels). An AUC-ROC value close to 1 signifies that the classifier is excellent at distinguishing between the two classes, while a value close to 0 suggests that the classifier is performing poorly.

When comparing different classification models, it is common to prefer the model with a higher AUC-ROC value, as it typically represents better overall classification performance. However, it's important to consider other performance metrics, as well as the specific context and goals of the classification task, before making a final decision.

机器学习-评价指标-AUCROC的更多相关文章

  1. [Feature] Final pipeline: custom transformers

    有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-cust ...

  2. python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数)

    python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评 ...

  3. 分四个阶段学习python并找到一份好工作

    第一阶段 关注公众号"轻松学编程"了解更多. 详细学习资料 需要时间一个月. 1.python概念 ​ python是一种解释型.面向对象.动态数据类型的高级程序语言. ​ 理解: ...

  4. 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)

    原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...

  5. 机器学习算法中的评价指标(准确率、召回率、F值、ROC、AUC等)

    参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Ac ...

  6. 机器学习模型评价指标之ROC 曲线、 ROC 的 AUC 和 投资回报率

    前文回顾: 机器学习模型评价指标之混淆矩阵 机器学习模型评价指标之Accuracy.Precision.Recall.F-Score.P-R Curve.AUC.AP 和 mAP 1. 基本指标 1. ...

  7. R语言︱机器学习模型评价指标+(转)模型出错的四大原因及如何纠错

    笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模 ...

  8. 准确率,召回率,F值,机器学习分类问题的评价指标

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  9. 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)

    原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...

  10. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

随机推荐

  1. vue全家桶进阶之路32:Vue3 WatchEffect和watch 监听

    在 Vue 3 中,watchEffect 是一个用于监听响应式数据变化的 API.它可以在函数内部自动跟踪数据的依赖,并在依赖变化时重新运行函数. watchEffect 的作用以及各个参数的功能讲 ...

  2. elementui中的el-table,(prop对应多个属性)中拼接两个列表字段并展示

    elementui中的el-table,(prop对应多个属性)中拼接两个列表字段并展示 <el-table-column prop="pa_dt_name,pa_duty_name& ...

  3. react中useRef的应用

    何为useRef useRef是随着react函数式组件发展而来的,是react众多官方hook中的一个,调用useRef可以返回一个伴随这组件整个声明周期不发生改变的对象,这个对象常见的用途有两个: ...

  4. js 获取系统yyyyMMdd时间

    var myDate = new Date(); var Time1 = myDate.toLocaleDateString()//yyyy/MM/dd 这个方法如果是1月份,会显示yyyy/M/dd ...

  5. SQL生成序号的四种方式

    排名函数是SQL SERVER2005新增的函数.排名函数总共有四种,分别是:row_number.rank. dense_rank .ntile. row_number:顺序生成序号. rank:相 ...

  6. day09-SpringCloud Sleuth+Zipkin-链路追踪

    SpringCloud Sleuth+Zipkin-链路追踪 官网:spring-cloud/spring-cloud-sleuth: Distributed tracing for spring c ...

  7. 10个 Istio 流量管理 最常用的例子,你知道几个?

    10 个 Istio 流量管理 最常用的例子,强烈建议收藏起来,以备不时之需. 为了方便理解,以Istio官方提供的Bookinfo应用示例为例,引出 Istio 流量管理的常用例子. Bookinf ...

  8. 【论文阅读】Uformer:A General U-Shaped Transformer for Image Restoration

    前言 博客主页:睡晚不猿序程 首发时间:2023.6.8 最近更新时间:2023.6.8 本文由 睡晚不猿序程 原创 作者是蒻蒟本蒟,如果文章里有任何错误或者表述不清,请 tt 我,万分感谢!orz ...

  9. Lucene检索全流程学习笔记

    一 简介 写作目的 1 为什么学习Lucene lucene是基于倒排索引的检索工具库,倒排索引是典型的文本匹配,它能够精确匹配用户搜索的query,它的缺点是不擅长语义理解,而深度学习检索模型擅长的 ...

  10. CF1770F Koxia and Sequence

    一步都没想到,一定是状态不好吧,一定吧一定吧? 加训数数! 题意 给定 \(n, x, y\),定义好的序列 \(\{a_i\}_{i = 1}^n\) 满足 \(\sum\limits_{i = 1 ...